Что такое true rms. True RMS измеритель мощности с функцией контроля и управления нагрузкой

Вступление

Измерение trueRMS переменного напряжения - задача не совсем простая, не такая, какой она кажется с первого взгляда. Прежде всего потому, что чаще всего приходится измерять не чисто синусоидальное напряжение, а нечто более сложное, усложнённое наличием гармоник шумов.

Поэтому соблазнительно простое решение с детектором среднего значения с пересчётом в ср.кв. значения не работает там, где форма сигнала сильно отличается от синусоидальной или просто неизвестна.

Профессиональные вольтметры ср. кв. значения - это достаточно сложные устройства как по схемотехнике, так и по алгоритмам . В большинстве измерителей, которые носят вспомогательный характер и служат для контроля функционирования, такие сложности и точности не требуются.

Также требуется, чтобы измеритель мог быть собран на самом простом 8-битном микроконтроллере.

Общий принцип измерения

Пусть имеется некое переменное напряжение вида, изображённого на рис. 1.

Квазисинусоидальное напряжение имеет некий квазипериод T.

Преимущество измерения среднеквадратичного значения напряжения в том, что в общем случае время измерения не играет большой роли, оно влияет только на частотную полосу измерения. Большее время даёт большее усреднение, меньшее даёт возможность увидеть кратковременные изменения.

Базовое определение ср. кв. значения выглядит вот таким образом:


где u(t) - мгновенное значение напряжения
T - период измерения

Таким образом, время измерения может быть, вообще говоря, любым.

Для реального измерения реальной аппаратурой для вычисления подинтегрального выражения необходимо проквантовать сигнал с некоторой частотой, заведомо превосходящей не менее, чем в 10 раз частоту квазисинусоиды. При измерении сигналов с частотами в пределах 20 кГц это не представляет проблемы даже для 8-битных микроконтроллеров.

Другое дело, что все стандартные контроллеры имеют однополярное питание. Поэтому измерить мгновенное переменное напряжение в момент отрицательной полуволны не представляется возможным.

В работе предложено довольно остроумное решение, как внести постоянную составляющую в сигнал. Вместе с тем в том решении определение момента, когда стоит начать или закончить процесс вычисления ср. кв. значения представляется довольно громоздким.

В данной работе предлагается метод преодоления этого недостатка, а также вычисление интеграла с большей точностью, что позволяет снизить число точек выборки до минимума.

Особенности аналоговой части измерителя

На рис. 2 показано ядро схемы предварительной аналоговой обработки сигнала.

Сигнал поступает через конденсатор C1 на усилитель-формирователь, собранный на операционном усилителе DA1. Сигнал переменного напряжения замешивается на неинвертирующем входе усилителя с половиной опорного напряжения, которое используется в АЦП. Напряжение выбрано 2.048 В, поскольку в компактных устройствах часто используется напряжение питания +3.6 В и менее. В иных случаях удобно использовать 4.048 В, как в .

С выхода усилителя-формирователя через интегрирующую цепочку R3-C2 сигнал поступает на вход АЦП, который служит для измерения постоянной составляющей сигнала (U0). C усилителя-формирователя сигнал U’ - это измеряемый сигнал, сдвинутый на половину опорного напряжения. Таким образом, чтобы получить переменную составляющую, достаточно вычислить разность U’-U0.
Сигнал U0 используется также в качестве опорного для компаратора DA2. При переходе U’ через значение U0 компаратор вырабатывает перепад, который используется для формирования процедуры прерывания для сбора измерительных отсчётов.

Важно, что во многие современные микроконтроллеры встроены как операционные усилители, так и компараторы, не упоминая АЦП.

Базовый алгоритм

На рис. 3 дан базовый алгоритм для случая измерения величины переменного напряжения с основной частотой 50 Гц.


Запуск измерения может осуществляться по любому внешнему событию вплоть до кнопки, нажимаемой вручную.

После запуска в первую очередь измеряется постоянная составляющая во входном сигнале АЦП, а затем контроллер переходит в ожидание положительного перепада на выходе компаратора. Как только прерывание по перепаду наступает, контроллер делает выборку из 20 точек с временным шагом, соответствующим 1/20 квазипериода.

В алгоритме написано X мс, поскольку низкобюджетный контроллер имеет собственное время задержки. Чтобы измерение происходило в правильные моменты времени, необхоимо учитывать эту задержку. Поэтому реальная задержка будет меньше 1 мс.

В данном примере задержка соответствует измерениям квазисинусоид в диапазоне 50 Гц, но может быть любой в зависимости от квазипериода измеряемого сигнала в пределах быстродействия конкретного контроллера.

При измерениях ср.кв. значения напряжения произвольного квазипериодического сигнала, если априори неизвестно, что это за сигнал, целесообразно измерить его период, используя встроенный в контроллер таймер и тот же выход компаратора. И уже на основании этого замера устанавливать задержку при осуществлении выборки.

Вычисление среднеквадратичного значения

После того, как АЦП создал выборку, имеем массив значений U"[i], всего 21 значение, включая значение U0. Теперь, если применить формулу Симпсона (точнее, Котеса) для численного интергрирования, как наиболее точную для данного применения, то получим следующее выражение:

где h - шаг измерения, а нулевой компонент формулы отсутствует, поскольку он равег 0 по определению.

В результате вычисления мы получим значение интеграла в чистом виде в формате отсчётов АЦП. Для перевода в реальные значения полученное значение нужно промасштабировать с учётом величины опорного напряжения и поделить на интервал времени интегрирования.

где Uоп - опорное напряжение АЦП.

Если всё пересчитать в мВ, K приблизительно равняется просто 2. Масштабный коэффициент относится к разностям в квадратных скобках. После пересчёта и вычисления S делим на интервал измерения. С учётом множителя h фактически получаем деление на целое число вместо умножения на h с последующим делением на интервал времени измерения.

И в финале извлекаем квадратный корень.

И вот тут самое интересное и сложное наступает. Можно, разумеется, использовать плавающую точку для вычислений, поскольку язык C это допускает даже для 8-битных контроллеров, и производить вычисления непосредственно по приведённым формулам. Однако скорость расчёта упадёт существенно. Также можно выйти за пределы весьма небольшого ОЗУ микроконтроллера.

Чтобы такого не было, нужно, как верно указано в , использовать фиксированную точку и оперировать максимум 16-битными словами.

Автору эту проблему удалось решить и измерять напряжение с погрешностью Uоп/1024, т.е. для приведённого примера с точностью 2 мВ при общем диапазоне измерения ±500 мВ при напряжении питания +3.3 В, что достаточно для многих задач мониторинга процессов.

Программная хитрость состоит в том, чтобы все процессы деления, по возможности, делать до процессов умножения или возведения в степень, чтобы промежуточный результат операций не превышал 65535 (или 32768 для действий со знаком).

Конкретное программное решение выходит за рамки данной статьи.

Заключение

В данной статье рассмотрены особенности измерения среднеквадратичных значений напряжения с помощью 8-битных микроконтроллеров, показан вариант схемной реализации и основной алгоритм получения отсчётов квантования реального квазисинусоидального сигнала.

Не всегда для проведения измерений требуется только правильно подключить измерительный прибор. Очень важно ответить себе на вопрос: зачем я это измеряю? Для измерения тока при проверке выделения тепла в проводе требуется один параметр, для измерения тока, чтобы определить уровень заряда конденсатора или батареи — совсем другой.

Параметры могут быть выражены в виде средней величины, среднеквадратического значения (RMS , Root Mean Square ), мгновенного или пикового значения. Важен не только тип нагрузки, но также, имеем мы дело с переменным или постоянным током и как выглядит форма напряжения и тока. Тесно связаными с понятиями напряжения и тока являются мощность и энергия.

Мгновенные значения

Мгновенные ток , напряжение и мощность — это значения, соответствующие конкретному моменту времени . Любой сигнал состоит из бесконечного числа мгновенных значений. В случае с напряжением это записывается как .

Рассмотрим цепь, состоящую из последовательно соединененных резистора и катушки индуктивности, подключенных к источнику синусоидального напряжения с пиковым напряжением и частотой Гц .

Синусоидальное напряжение, как функцию времени, в этом случае, можно записать как:

(1)

Ток имеет максимальное значение и сдвинут на по отношению к напряжению:

(2)

Мощность, как функция времени, представляет собой соответствующие мгновенные значения напряжения и тока:

(3)

На рисунке ниже представлены графики напряжения, тока и мощности.

Для примера линией серого цвета показаны мгновенные значения для момента времени мс :

v (4.2) = 2.906 В

i (4.2) = 0.538 А

p (4.2) = 1.563 Вт

В определенный момент времени, мгновенные напряжение и ток всегда можно умножить, рассчитав мгновенную мощность.

Средние значения

Средние значения — это наиболее часто часто используемые параметры.

Если мультиметр устанавливается для измерения значений на постоянном токе, измеряются средние значения напряжения и тока. Кроме того, если мультиметр работает в режиме измерений постоянного тока, то для сигналов на переменном токе также будут измерены средние значения напряжения или тока. В случае симметричного переменного напряжения, мультиметр покажет , что является правильным значением.

Напряжение и ток

Среднее значение является суммой всех произведений мгновенных значений , деленное на число произведенных измерений. Если измерения производятся бесконечное число раз, то мы можем перейти к пределу, в котором промежуток времени измерения → 0 и сумма превратится в интеграл. В общем виде:

(4)

Для напряжения мы получим:

(5)

Мультиметр

Как упоминалось ранее, мультиметр, переведонный в режим измерений на постоянном токе, измеряет среднее значение напряжения или тока. В цифровых приборах, это среднее получается с помощью RC -фильтра. Входной сигнал непрерывно усредняется по постоянной времени . В виде формулы:

(6)

Усреднение напряжения RC-фильтром

Энергия и мощность

Уравнение (3) показывает, что результатом произведения мгновенного напряжения и тока является мгновенная мощность . Если просуммировать мгновенную мощность, умноженную на бесконечно малое время , то результатом будет энергия. Так как :

(7)

Действительно, энергия есть мощность, умноженная на время: , и энергетические пакеты можно всегда сложить для расчета полной энергии.

В качестве примера, опять возьмем последовательное соединение катушки индуктивности и резистора. На рисунке ниже черной линией показана динамика энергии во времени, рассчитанная в соответствии с уравнением (7).

Кривая мощности в случае напряжения и тока переменной полярности, также имеет периодическое изменение амплитуды с удвоенной частотой. Поскольку энергия рассеивается на сопротивлении, область серого цвета положительных значений кривой мощности больше, чем отрицательной области.

Значение энергии (черная линия) в любой момент времени равно площади под кривой мощности до этого момента. Хорошо видно, что энергия периодически возрастает сильнее, чем падает в результате амплитудной асимметрии кривой мощности относительно оси .

На рисунке показан период времени . Энергия внутри этого временного интервала , которая поступила в систему обозначена и вычисляется следующим образом:

(8)

Средняя мощность за определенный период времени равна общему количеству энергии, за это время, деленному на время измерений:

(9)

Если это подставить в уравнение (8), среднюю мощность можно вычислить для любой .

(10)

Это уравнение получено в соответствии с (4). Активная мощность всегда является средней мощностью.

Это уравнение для расчета средней рассеиваемой мощности всегда справедливо, потому что расчет основан на мгновенных значениях. Не имеет значения, является ток постоянным или переменным, как выглядит форма напряжения и тока и есть ли сдвиг фаз между напряжением и током.

Уравнение для расчета средней мощности лежит в основе метода, применяемого в измерителях мощности. Счетчики электроэнергии дома и на предприятиях работают в соответствии с уравнением (8), которое можно переписать в виде:

(11)

Верхний предел в интеграле — момент времени, в который счетчик энергии считывает значение.

Эффективные (RMS ) значения

Среднеквадратическим (RMS ), или эффективным значением является значение напряжения или тока, при котором на нагрузке рассеивается та же мощность, что и при постоянном напряжении или токе.
При переменном напряжении с эффективным значением 230В будет выделяться такое же количество тепла на нагрузке, как и при постоянном напряжении 230В . Действующее значение относится только к выделению тепла на резистивной нагрузке. Для примера, значение RMS тока полезно для измерения напряжения под нагрузкой в проводе (= резистивная), но не для измерения зарядного тока батареи или конденсатора (= поток электронов).

Средне квадратическое значение

RMS является аббревиатурой от Root Mean Square , что буквально переводится как среднеквадратическое значение.

Над напряжением или током, как функциями времени, для вычисления значения RMS последовательно проводятся три математические операции: возведение в квадрат, усреднение и извлечение квадратного корня. Почему так?

Мощность, выделяемая на резисторе, подключенным к источнику напряжения:

(12)

Для мгновенных мощности и напряжения:

(13)

Вычисление средней мощности как функции времени показано в (10). можем подстваить из (13):

(14)

Так как — константа, то ее можно вынести за интеграл:

(15)

Перенеся напряжение в уравнении (12) в левую часть, мы можем расчитать напряжение по средней мощности и сопротивлению:

(16)

Затем, вычисленную среднюю мощность из (15), подставим в уравнение (16):

(17)

Сократив значения сопротивлений , получим:

(18)

Хорошо видно, что это уравнение состоит из трех частей: квадрата , среднего и квадратного корня.

В приведенных выше выкладках вычислялось значение напряжения на резисторе. Аналогично можно сделать и для тока через резистор:

(19)

Большинство мультиметров не может вычислить эффективное значение измеряемого напряжения. Чтобы узнать среднеквадратическое значение, обычно необходим специальный прибор.

На рисунке ниже показано, как вычисляет измеряемое напряжение прибор True RMS (истинные среднеквадратические значения). True RMS прибор, на практике, использует несколько иной метод работы, в котором необходим только один умножитель. Аналоговые умножители должны иметь очень низкий температурный дрейф и смещение, что делает эти инструменты достаточно дорогими.

Аналоговая схема получения RMS-значений

Кроме того, можно сделать расчет RMS программным путем с последовательных цифровых значений измеряемых напряжений. Этот подход обычно используется в мультиметрах и .

Псевдо RMS

Большинство мультиметров не измеряет RMS -значений, когда выбран режим переменного тока. Тем не менее, они, кажется, дают эффективные значения при измерениях переменных напряжений и токов. Но отображаемые значения действительны только при измерениях синусоидального сигнала.

Простой прибор сначала выпрямляет измеряемый сигнал. Затем RC -фильтр нижних частот выделяет среднее значение, которое масштабируется таким образом, что прибор показывает эффективное значение. В виде уравнения:

(20)

Недостатком такого подхода является то, что это подходит только для синусоидальных сигналов. Для любой другой формы сигнала будет получено ошибочное эффективное значение.

Номинальная мощность?

Особенно в аудиотехнике широко используется термин «Номинальная мощность» или . Это по определению ошибочный термин.

Чуть выше, говоря про энергию и мощность, показано, что рабочая мощность рассчитывается из общего количества энергии, деленного на время за которое эта энергия измеряется, см. уравнение (9). Полная энергия определяется путем суммирования всех мгновенный пакетов энергии , см. уравнение (11​​). Это единственно правильный путь для расчета активной мощности.

Как выше указано, эффективное значение эквивалентно постоянному напряжению или току, при которых выделится такая же мощность на том же сопротивлении. Этот показатель рассчитывается как квадратный корень из среднего значения квадрата мгновенного напряжения (или тока). Нет причин думать, что эти три математические операции должны производиться для мгновенной мощности. Это было бы бессмысленное значение.

Описание:

Во многих коммерческих и промышленных установках происходят постоянные отключения защитных систем. Зачастую отключения кажутся случайными и необъяснимыми, но, конечно, причина существует, а в нашем случае их две.

Истинное RМS – единственно правильное измерение

К. Вест , Fluke (UK) Ltd.

Во многих коммерческих и промышленных установках происходят постоянные отключения защитных систем. Зачастую отключения кажутся случайными и необъяснимыми, но, конечно, причина существует, а в нашем случае их две. Первая возможная причина – это противотоки, которые возникают при включении некоторых видов нагрузки, например персональных компьютеров (этот вопрос будет рассмотрен в одной из будущих публикаций данного руководства). Второй возможной причиной является то, что реальный ток, протекающий по цепи, был недоизмерен, т. е. реальные значения тока выше измеренного.

Занижение значений измерения случается очень часто в современных установках. Но почему это происходит, если современные цифровые измерительные приборы так точны и надежны? Ответ заключается в том, что многие инструменты не подходят для измерения искаженных токов, а большинство токов в наши дни являются таковыми.

Искажения происходят из-за гармонических токов, производимых нелинейными нагрузками, особенно электронным оборудованием, таким как персональные компьютеры, флуоресцентными лампами с электронным балластом и регулируемым приводом. Процесс возникновения гармоник, а также их воздействие на электрические системы будет описываться в одной из будущих публикаций руководства (раздел 3.1). На рис. 3 изображена типичная кривая тока, потребляемого персональным компьютером. Очевидно, что это не синусоида, а стало быть все обычные синусоидные измерительные приборы и методы вычисления больше не применимы. Это означает, что при ремонте или анализе работы системы электроснабжения необходимо использовать приборы, которые могут измерять несинусоидальные токи и напряжения.

На рис. 1 изображены два измеряющих прибора (токовые клещи) на одной и той же цепи. Оба прибора работают правильно и откалиброваны по спецификациям производителя. Ключевое различие заключается в том, как измеряют данные инструменты.

Левый прибор является устройством измерения истинного RMS, а правый – это калиброванный прибор, измеряющий усредненный RMS. Для того чтобы оценить разницу, необходимо понять, что означает RMS.

Что такое RMS?

Среднеквадратичная величина (RMS) переменного тока – это величина, эквивалентная значению постоянного тока, который производил бы такое же количество теплоты при фиксированной нагрузке. Количество теплоты, производимой в резисторе переменным током, пропорционально квадрату тока, усредненного по полному циклу кривой. Другими словами, производимая теплота пропорциональна среднему значению квадрата, и, таким образом, величина тока пропорциональна корню среднеквадратичного значения (полярность не имеет значения, т. к. квадрат всегда положителен).

Для правильной синусоиды (рис. 2) величина RMS составляет 0,707 от максимального значения, или максимальное значение равно √2, или 1,414, от значения RMS. То есть максимальное значение 1-амперного RMS тока чистой синусоиды будет равно 1,414 А. Если амплитуда синусоиды усредняется (с преобразованием отрицательной половины цикла), среднее значение будет равно 0,636 от максимального или 0,9 от значения RMS. На рис. 2 показаны две важных пропорции:


При измерении правильной синусоиды (и только для правильной синусоиды) правомерно делать простое измерение среднего значения (0,636 х максимум) и умножать результат на коэффициент формы, равный 1,111 (что составит 0,707 от максимума), и назвать его RMS-величиной. Подобный подход используется в аналоговых измерительных приборах, где усреднение осуществляется путем инерции и гашения колебаний в катушке индуктивности, а также во всех старых и более современных цифровых универсальных измерительных приборах. Метод описывается как измерение, усредненное, RMS-калиброванное.

Проблема заключается в том, что этот метод работает только для правильных синусоид, которые не существуют в реальных электроустановках. Кривая на рис. 3 – это типичная кривая тока, потребляемого персональным компьютером. Точное RMS-значение все еще равно 1 А, но максимальное значение гораздо выше – 2,6 А, а среднее значение гораздо ниже – 0,55 А.

Если эта кривая измеряется усредняющим RMS-прибором, то она будет читаться как 0,61 А, в то время как реальная величина равна 1 А (т. е. почти на 40 % меньше). В таблице приведены некоторые примеры того, как два различных типа измерителей реагируют на различные формы волн.

В измерителе истинного RMS берется квадрат моментальной величины входящего тока, усредняется по времени, а затем на дисплее показывается квадратный корень от этого среднего значения. При идеальных условиях применения показания абсолютно точны, какая бы ни была кривая. Однако применение никогда не бывает идеальным, и следует принимать во внимание два ограничивающих фактора: частотную характеристику и коэффициент амплитуды.

Для функционирования систем электроснабжения обычно достаточно произвести измерения до 50-й гармоники, т. е. до частоты приблизительно в 2 500 Гц. Максимальное значение амплитуды, пропорция между максимальным значением и RMS-значением очень важны. Более высокие значения максимальной амплитуды требуют приборы с более широким динамическим диапазоном, а следовательно, более высокой точности в преобразовании диаграммы.

Несмотря на то что приборы дают различные показания при измерени искаженных кривых, показания обоих приборов совпадут при измерении правильной синусоиды. Это условие, при котором они калибруются, т. е. каждый тип измерительного прибора может быть сертифицирован как калиброванный, но только для использования на синусоидах.

Счетчики истинного RMS появились по крайней мере 30 лет назад, но они были специализированными и относительно дорогими приборами. Достижения в электронике привели к тому, что функции истинного RMS-измерения встраиваются во многие переносные мультиметры. К сожалению, эта техническая характеристика встречается только в наиболее современных продуктах большинства производителей, но при этом они не так дороги, как раньше, и стали доступными инструментами для использования в повседневной деятельности.

Таблица
Сравнение реакций на различные формы волн измерителей усредненного и истинного RMS
Тип измерения
мультиметра
Реакция на
синусоиду
Реакция на
прямоуголь-
ное колебание
Реакция на
однофазный
диодный
выпрямитель
Реакция на
трехфазный
диодный
выпрямитель
Усредненное RMS Правильная На 10 % выше На 40 % ниже На 5–30 % ниже
Истинное RMS Правильная Правильная Правильная Правильная

Последствия заниженного замера

Эксплуатационные ограничения большинства элементов электрической цепи определяются количеством тепла, которое может быть рассеяно с тем, чтобы элемент или компонент не перегрелся.

Номиналы допустимых значений тока для кабелей, к примеру, приводятся для определенных условий эксплуатации (фактор, определяющий, насколько быстро может происходить отвод тепла) и максимальной допустимой рабочей температуры. Так как гармонически загрязненные токи имеют большее значение RMS, чем то, которое замеряется счетчиком усредненного RMS, примененные провода и кабели могут иметь недостаточные номиналы и будут работать более нагретыми, чем ожидалось. Результатом будет разрушение изоляции, преждевременный износ и опасность пожара.

Размерность шины измеряется путем подсчета соотношения скорости охлаждения конвекцией и излучения, а также скорости нагрева из-за потерь сопротивления. Температура, при которой эти скорости равны, является рабочей температурой шины, или она спроектирована так, чтобы рабочая температура была достаточно низкой для избежания преждевременного износа изоляционных и опорных материалов. Как и в случае с кабелями, ошибки при измерении истинного RMS-значения приведут к более высоким рабочим температурам. Вследствие того что шины обычно имеют значительные размеры, поверхностный эффект более очевиден, чем в маленьких проводниках.

Это приводит к еще большему увеличению температуры.

Другие компоненты электрической системы, такие как плавкие предохранители и тепловые элементы автоматов отключения оцениваются в токе RMS, потому что их характеристики имеют отношение к рассеиванию теплоты. Это является основной причиной раздражающих псевдоаварийных отключений – сила тока выше ожидаемой, поэтому автомат отключения функционирует в температурном режиме, при котором отключения будут происходить неминуемо. Как при любом перерыве в подаче электроэнергии, стоимость сбоя из-за аварийного отключения может быть довольно высокой и повлечь за собой потерю данных в компьютерных системах, сбои в работе систем управления технологическими процессами и т. д. Эти вопросы будут обсуждаться в будущих публикациях руководства (раздел 2)

Таким образом, только с помощью инструментов измерения истинного RMS возможен точный выбор номиналов кабелей, шин, фидеров и защитной аппаратуры. Важным является вопрос, является ли данное устройство прибором измерения истинного RMS? Обычно, если счетчик является измерителем истинного RMS, это указывается в спецификации продукта. Практически ответ может быть получен путем сравнения показаний известного усредняющего измерителя (как правило, самого дешевого, который может быть в распоряжении) и предполагаемого измерителя истинного RMS при замере тока в нелинейной нагрузке, например, тока от персонального компьютера с током лампы накаливания. Оба измерителя покажут одинаковую силу тока для нагрузки лампы накаливания. Если один из приборов имеет значительно более высокие показатели (скажем на 20 % выше) для нагрузки персонального компьютера, чем для другой нагрузки, тогда, вероятно, он является прибором истинного RMS, а если показания одинаковы – приборы относятся к одному и тому же типу.

Заключение

RMS-замеры важны для любой установки, в которой имеется значительное число нелинейных нагрузок (персональные компьютеры, электронные балласты, компактные флуоресцентные лампы и т. д.). Усредняющие RMS-измерители дают недомер до 40 %, что приводит к недооценке номиналов кабелей и защитных устройств. Это грозит сбоями в их работе, аварийными отключениями и преждевременным износом.

Нелишне помнить и о том, что при функционировании в режимах нерасчетной электрической и, главное, тепловой нагрузки, вызванной недооценкой истинных значений токов в результате недомера, снижается общая энергоэффективность электроустановки.

Перепечатано с сокращениями из издания Европейского института меди

«Прикладное руководство по качеству электроэнергии»

Перевод с английского Е. В. Мельниковой

Редактор перевода В. С. Ионов

Два года назад я делал обзор на эту модель мультиметра. То был прибор, заказанный по просьбе моего знакомого. На этот раз заказал на свои (рассчитывал в подарок). Заказ получил ещё весной. Но, думаю, обзор актуальности не потерял. Так что ж меня заставило сделать этот обзор? В том топике сделал одно серьёзное упущение. Совершенно не заметил надпись True RMS. Некоторые измерения тоже пропустил. Проверю более глубинно.
И не мешало бы напомнить, что есть такой недорогой мультиметр (самый дешёвый с True RMS). Ведь тот обзор не все читали.

Для покупки мультиметра я использовал скидку. Если у вас есть поинты, вы тоже можете ими воспользоваться.
Для начала быстро глянем, в каком виде всё прибыло. Посылка бестрековая. Платить за трек очень не хотелось, зная особенно, что из этого магазина итак всё неплохо приходит (менее 30 дней с оплаты).


Стандартный пакет без «пупырки». Внутри вспененный полиэтилен должен был защитить прибор от всех неожиданностей.

От всех неожиданностей он не защитил. В итоге имеем серьёзно сплюснутую коробочку. Но прибор цел и невредим.
Вот, что было в комплекте:
1-Коробочка
2-Мультиметр
3-Инструкция на «родном» китайском языке. Скан можно глянуть здесь:

4-Две батарейки ААА (внутри мультиметра).
5-Шнурок на ……. руку? Скорее на два пальца (ну очень маленький).
6-Гарантийная карточка.


За это время в оформлении девайса ничего не изменилось.


Голографическая наклейка в подтверждение подлинности (по центру и её периметру иероглифы).


Откидываю крышку, и прибор готов к работе. Щупы с проводами аккуратно собраны в специальный кармашек. Длина проводов 37см + щупы 10см. Места очень мало. С трудом всё умещается.


Провода тонкие и немягкие. Если бросить в машину и пользоваться изредка – надолго хватит. При повседневном пользовании щупы вскоре придётся заменить. Новые уже в кармашек не влезут. Придётся сверлить дырку (отверстие) сбоку. Иначе крышка не закроется.
Вот эту надпись тогда я не заметил.


На крышке краткие характеристики с возможностями прибора.


На странице магазина более детально с указанием погрешности измерений.

На самом деле всё намного лучше. Об этом чуть позже.
Сам прибор в пластмассовом корпусе с крышкой, закрывающей лицевую панель. Корпус выполнен аккуратно, все прилегает достаточно плотно.
Мультиметр небольших размеров.

Взвесил. С батарейками 127г.


Надписи, нанесённые на прибор, имеют чёткие очертания.


Крышка на защелке, закрывается плотно, для открывания надо приложить небольшое усилие. В крышке прорезь. Закрыть прибор крышкой можно только в том случае, если переключатель режимов установлен в правильное левое положение «выключен».


Крышку можно использовать как подставку. Хотя, такое использование сомнительно.

Переключатель режимов работы дисковый, с четкой фиксацией и щелчком.
При включении автоматически включается режим с автовыбором диапазона измерений. Для ручного выбора диапазона имеется желтая кнопка «RANGE», с циклическим переключением.
Подсветки дисплея нет.
Автооключение.
Если с прибором не совершается никаких операций при помощи поворотного переключателя или кнопок, то через 14-15 минут он подаёт четыре коротких предупредительных попискивания (достаточно громких). После пятого более продолжительного - мультиметр переходит в спящий режим и отключается. Для его оживления придётся перевести переключатель режимов в положение OFF, а затем включить в нужное положение. На нажатие кнопок не реагирует, «оживить» таким образом не удастся.
Включение/отключение режима автоматических измерений «RANGE» (жёлтая кнопка) .
Работает при измерении сопротивления и напряжения постоянного/переменного тока. Для этого необходимо нажать на кнопку. Кратковременное нажатие переключает поддиапазоны. В режиме измерения ёмкости и частоты автоматический режим измерения не отключается.
Относительные измерения «REL» (синяя кнопка).
Работает при измерении напряжения и сопротивления.
При измерении частоты переключает в режим измерения скважности.
Разрядность дисплея: 4000 отсчётов с плавающей точкой.


Возможности дисплея избыточны по отношению к возможностям прибора.
Девайс работает от двух батареек ААА. Это несомненно плюс.


Батарейки шли в комплекте. Обычные солевые, их лучше поменять. Если потекут – испортят пружинки.
Кому интересно, заглянем, что внутри.
Один саморез я открутил. Без снятия батарейной крышки к «потрохам» не добраться. Дальше необходимо обезвредить несколько защёлок.


Затем откручиваю 4 самореза.


Контактные площадки переключателя почти не смазаны. Смазал циатимом.
Внутри ни одного подстроечного элемента. С одной стороны – плохо. Нельзя подрегулировать точность измерений (в случай чего). С другой стороны – хорошо. Подстроечных элементов нет, значит, и сбиваться нечему.
В роли процессора микросхема типа «клякса». Компаунда не пожалели.


К качеству пайки замечаний не имею.
Прибор я закрываю, и перехожу к определению точностных характеристик прибора.
Все приборы, при помощи которых буду определять точность, имеют стоимость в пределах от 10 000 до 100 000рублей. Естественно это не личные приборы. Вряд у кого они есть в личном пользовании. Кому-то будет интересно.
Проверим, как измеряет переменку при помощи В1-9 (установка для поверки вольтметров)


Эта установка позволяет измерять погрешность непосредственно в процентах. Но этой удобной опцией я не воспользуюсь. Все измерения приведу в виде таблицы. По моему мнению, так нагляднее. Выставляю частоту 50Гц, регулятор погрешности вывожу на ноль. Просто записываю то, что показывает мультиметр.


Результат просто шикарный. На 10мВ можно особо не обращать внимание. Во-первых, погрешность даёт наводимое на провода напряжение (наводка). Во-вторых, за всю жизнь не приходилось измерять напряжения такого уровня. Для измерения напряжений такого уровня необходимы экранированные провода небольшой длины.
Кроме всего прочего эта установка позволяет изменять частоту образцового сигнала. В результате я получил, что мультиметр позволяет точно измерять синусоиду в пределах 10-1100Гц.
А вот сравнительное фото измеренного напряжения промышленной сети с другим достаточно точным прибором True RMS В7-78 (будем его считать образцовым), который стОит раз в… цать дороже обозреваемого.


Расхождения имеются. Но это очень хороший результат. Поверьте мне, не первый год тружусь…
Постоянку буду оценивать при помощи калибратора программируемого П320. Всё просто. Подключаю к калибратору мультиметр и записываю то, что он (мультиметр) показывает. Все данные свёл в таблицу.


На пределах 420мВ - 4,2В - 42В результат просто шикарный. На остальных - в заявленных границах.
Перехожу к измерению сопротивления.
Помогут мне магазины сопротивлений Р4834 и Р4002.
Сначала перемкнул щупы.

Все данные измерений свёл в таблицу.


Если не брать во внимание предел 42МОм, погрешность намного выше заявленной (в последнем знаке).
Прозвонка диодов и пищалка разнесены в разные режимы. При прозвонке диодов на разомкнутых щупах присутствует напряжение батареи. Можно прозванивать светодиоды. Под нагрузкой напряжение (естественно) падает.

В режиме пищалка и измерении сопротивлений напряжение на щупах около одного Вольта.
Это реально измеренные показания.
Точность измерения ёмкостей проверю при помощи магазина Р5025.
Некоторые нюансы поясню.
1.Образцовка имеет начальную ёмкость, её необходимо учитывать.
2.При измерении ёмкостей более 10мкФ наблюдается задержка в измерениях. Время задержки я отметил в таблице.


Магазин ограничен ёмкостью в 100мкФ. На бОльшую ёмкость образцовки не имею.
Добавлю несколько фото с измерениями электролитов.


Хотел узнать, на какой предел рассчитан прибор. Но так и не узнал.


В характеристиках написано, что может измерять до 200мкФ. Как видим из фото, может измерять и более 10.000мкФ. Приятная фишка!
Эту связку прибор измерил за 7 секунд. Хотя по логике тестирования на образцовке, думал, что потратит не менее минуты.
Измерение частоты…
Для определения точности измерения подключал к прибору Will"TEK Stabilock 4032. Особо не напрягался. Прибор может выдавать калиброванные частоты, что очень удобно.

Прошу извинения за качество фото. Прибор стоИт в закутке помещения. А при вспышке качество картинки ещё хуже.
Все данные свёл в таблицу. (Чувствительность прибора по частоте продублировал на Г3-112.)
Точность показаний явно выше заявленной.

Частоту измеряет и выше 10МГц. Правда, чувствительность слабовата. Приходится задирать сигнал. Остановился на 34МГц.

Возвращаемся в начало обзора. Так что ж меня заставило сделать этот обзор? В том топике сделал одно серьёзное упущение. Совершенно не заметил надпись True RMS. Отличительной особенностью этого мультиметра является вычисление среднеквадратичного значения измеренного переменного напряжения.
Проверил при помощи MHS-5200A. Интересен тем, что может выдавать сигналы любой формы. Выставил частоту 50Гц. Но есть особенность. Показывает только размах сигнала (в моём случае 10В амплитудное значение).


Форму сигнала и среднеквадратичное (True RMS) значение контролировал при помощи другого девайса (кто знает цену – молчите:))
Сначала подал синусоиду.

Затем подал вот такой.


Затем такой.


Затем такой.


И, наконец…


Супер!
Обычные мультиметры (дают погрешность больше 8%) на таких формах сигнала начинают сильно врать.


Этот прибор (FUYI FY9805) я калибровал специально под обзоры, нравится он мне своей контрастностью цифр. Но True RMS в него не вставишь:(Поэтому и врёт, если не синусоида.
А VICTOR VC921 не подвёл. Китайцы не обманули. Он действительно может.
Пора переходить к заключительной части. Выделю то, что мне понравилось и не понравилось. Точка зрения субъективная.
Минусы:
- Нельзя быстро заменить щупы (в случае обрыва), так как запаяны прямо в плату прибора.
- Маловато пространство для щупов.
- Бледноватые показания в отличие от своих собратьев.
- Не измеряет силу тока (для кого-то это важно).
- Нет аналоговой шкалы.
- Нет подсветка дисплея.
- Не мягкие среднего качества щупы.
Плюсы:
+ Индикатор показывает измеряемые величины (мкФ, мВ, …).
+ Автовыбор пределов измерения (с возможностью отключения функции).
+ Сделан аккуратно и добротно.
+ Можно прозванивать светодиоды.
+ Наличие автоотключения. Прибор выключится через 15 минут.
+ Прибор (с точки зрения метрологии) просто шикарный. Правда, нюансы имеются.
+ Питание от двух ААА элементов несомненный плюс (для меня). Найду всегда и везде (хоть в командировке, хоть дома)
+ Наличие на передней крышке прорези под переключатель заставляет выключить прибор после использования.
+Измеряет электролиты ёмкостью свыше 10 000мкФ!
+ С True RMS!
Вывод:
Он действительно того стоит. Применяйте купон, и вам тоже будет счастье:)
Кажись всё. Если что забыл, поправьте.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я лишь могу гарантировать правдивость своих измерений. Кому что-то неясно, задавайте вопросы. Надеюсь, хоть кому-то помог.
Теперь всё.
Удачи всем!

Планирую купить +34 Добавить в избранное Обзор понравился +56 +100


error: Контент защищен !!