Практическая работа «Решение систем линейных уравнений третьего порядка методом Крамера. Метод крамера решения систем линейных уравнений В.С

В § 3.3 были показаны ограничения, возникающие при слежении за сигналами изменяющейся частоты при помощи системы второго порядка. Рассмотрим теперь возможность смягчения некоторых из этих ограничений путем введения в систему второго интегратора. Оказывается, что процесс захвата для системы третьего порядка менее устойчив, чем для системы второго порядка, но при помощи второго интегратора можио расширить диапазон слежения за системой, которая в начальный момент была уже захвачена. Передаточная функция фильтра теперь имеет вид

и из (3.1) следует:

После подстановки это выражение приводится к виду

Нормируя и вводя обозначения получим

Обычный метод фазовой плоскости неприменим к дифференциальным уравнениям третьего порядка вследствие того, что в этом случае имеются три начальных условия, соответствующие трем переменным: фазе, частоте и скорости изменения частоты (в механических системах - смещению, скорости и ускорению). В принципе траектории, определяемые уравнением третьего порядка, можно было бы представить в трехмерном пространстве. Всякая же попытка спроектировать эти траектории для J множества начальных условий на плоскость привела бы к столь запутанной диаграмме, что из нее было бы невозможно сделать какие-либо общие заключения.

С другой стороны, если ограничиться одной совокупностью начальных условий, то можно получить проекцию траектории на плоскость . Особое значение представляет следующая совокупность начальных условий: Другими словами, система в начальный момент захвачена, так что ошибки по частоте и фазе равны нулю, когда опорная частота начинает линейно изменяться.

Легко изменить структуру аналоговоговычислительного устройства, чтобы учесть введение второго интегратора.

Рис. 3.19. Проекции траекторий в фазовом пространстве для петли третьего порядка

(см. скан)

На рис. 3.19 изображен ряд траекторий, спроектированных на плоскость . Во всех рассмотренных случаях так что . В гипотетическом трехмерном «фазовом пространстве» траектории начинаются в точке и заканчиваются на оси

На рис. 3.19, а показано поведение системы второго порядка при таких же начальных условиях. Окончательное, или установившееся, значение фазы равно как было показано в § 3.3. Введение второго интегратора приводит к уменьшению установившейся ошибки по фазе до нуля тем быстрее, чем больше При возрастании наибольшая ошибка по фазе также уменьшается, однако за счет уменьшения затухания системы, что приводит к увеличению среднеквадратичной ошибки по фазе (см. рис. 3.19, б - 3.19, ж). Наконец, при система становится неустойчивой.

Получаемое путем увеличения порядка системы улучшение иллюстрируется на рис. 3.20. Здесь как и прежде, но . В § 3.3 было показано, что при такой или большей быстроте линейного изменения частоты система не могла осуществлять слежение. Рис. 3.20, а подтверждает это обстоятельство. С другой стороны, даже при наименьшей степени влияния второго интегратора получается нулевая установившаяся ошибка по фазе. Наибольшее мгновенное значение фазового рассогласования уменьшается при увеличении коэффициента но при система вновь делается неустойчивой.

Аналогичные особенности видны на рис. 3.21-3.23, за исключением того обстоятельства, что при возрастании отношения для поддержания системы в состоянии захвата требуются все возрастающие значения коэффициента В конце концов при приближении отношения к 2 или при необходимо, чтобы было около 1/2. Но из рис. 3.19, ж - 3.23, з видно, что при этом значении система неустойчива. Диапазон значений коэффициента при которых система остается в состоянии захвата в зависимости от отношения представлен на рис. 3.24-3.26 при значениях соответственно. Заштрихована область допустимых значений коэффициента Видно, что при линейном изменении частоты введение системы третьего порядка позволило расширить Диапазон, при котором получается слежение, примерно

Рис. 3.20. Проекции траекторий в фазовом пространстве для петли третьего порядка

(см. скан)

Рис. 3.21. Проекции траекторий в фазовом пространстве для петли третьего порядка

(см. скан)

Рис. 3.22. Проекции траекторий в фазовом пространстве для петли третьего порядка

(см. скан)

Рис. 3.23. Проекции траекторий в фазовом пространстве для петли третьего порядка

(см. скан)

Рис. 3.24. Область состояния захвата системы третьегопорядка

Рис. 3.25. Область состояния захвата системы третьего порядка

Рис. 3.26. Область состояния захвата системы третьего порядка

вдвое больше по сравнению с системой второго порядка при и даже еще большее при меньших значениях

Можно теоретически объяснить колебательный характер изменения коэффициента b при его значениях около или более 1/2. Продифференцировав уравнение (3.41), получим

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу . Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

Здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

Если обозначить:

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Метод Крамера – теоремы

Прежде чем решать уравнение, необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Теорема

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

Например,

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Теорема

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Например:

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса , при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

Если , тогда в результате получаем формулы Крамера:

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Теорема

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Теорема

Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю

Действительно, пусть одно из неизвестных, например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Пример 1

Задача

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:

Аналогично находим остальные определители:

И проверяем:

Ответ

Пример 2

Задача

Решить систему уравнений методом Крамера:

Решение

Находим определители:

Ответ

= = = = = =

Проверка

Уравнение имеет единственное решение.

Ответ

Пример 3

Задача

Решить систему методом Крамера

Решение

Как вы понимаете, сначала находим главный определитель:

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

При помощи формул Крамера находим корни уравнения:

Чтобы убедиться в правильности решения, необходимо сделать проверку:

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: , , .

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Пример 4

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Как и в предыдущих примерах находим главный определитель системы:

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Используя формулы Крамера, находим:

Ответ

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

Ответ

Итак, мы нашли корни системы линейного уравнения:

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса Метод Крамера в Excel от 2007 (XLSX)

Метод Крамера – теорема, примеры решений обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.

Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

Равенство матриц.

A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

Действия над матрицами.

1. Сложение матриц - поэлементная операция

Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B.

Покажем операцию умножения матриц на примере:

6. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

Строки и столбцы поменялись местами

Пример

Свойства опeраций над матрицами

(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

Виды матриц

1. Прямоугольные: m и n - произвольные положительные целые числа

2. Квадратные: m=n

3. Матрица строка: m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

4. Матрица столбец: n=1 . Например

5. Диагональная матрица: m=n и a ij =0 , если i≠j . Например

6. Единичная матрица: m=n и

7. Нулевая матрица: a ij =0, i=1,2,...,m

j=1,2,...,n

8. Треугольная матрица: все элементы ниже главной диагонали равны 0.

9. Квадратная матрица:m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательноA"=A

Например,

Обра́тная ма́трица - такая матрица A −1 , при умножении на которую исходная матрица A даёт в результате единичную матрицу E :

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Примеры решения систем линейных алгебраических уравнений матричным методом.

Рассмотрим матричный метод на примерах. В некоторых примерах мы не будем подробно описывать процесс вычисления определителей матриц.

Пример.

С помощью обратной матрицы найдите решение системы линейных уравнений

.

Решение.

В матричной форме исходная система запишется как, где . Вычислим определитель основной матрицы и убедимся, что он отличен от нуля. В противном случае мы не сможем решить систему матричным методом. Имеем , следовательно, для матрицы А может быть найдена обратная матрица . Таким образом, если мы отыщем обратную матрицу, то искомое решение СЛАУ определим как . Итак, задача свелась к построению обратной матрицы . Найдем ее.

Обратную матрицу можно найти по следующей формуле :

, где – определитель матрицы А, – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Понятие обратной матрицы существует только для квадратных матриц , матриц «два на два», «три на три» и т.д.

Полярные координаты. В полярной системе координат положение точки М

М

ПРЯМОУГОЛЬНЫЕ КООРДИНАТЫ В ПРОСТРАНСТВЕ

ПРЯМАЯ

1. Общее уравнение прямой. Всякое уравнение первой степени относительно х и у, т. е. уравнение вида:

(1) Ах+Ву+С=0 наз. общин уравнением прямой ( + ≠0),A,B,C-ПОСТОЯННЫЕ КОЭФИЦИЕНТЫ.






КРИВЫЕ ВТОРОГО ПОРЯДКА

1. Окружность. Окружность-это множество точек плоскости, равноудален-

равноудаленных от данной точки (центра). Если г - радиус окружности, а точка С (а; Ь) - ее центр, то уравнение окружности имеет вид:

Гипербола . Гиперболой называется множество точек плоскости, абсолютная

величина разности расстояний которых до двух данных точек, называемых фо-

кусами, есть величина постоянная (ее обозначают через 2а), причем эта постоянная меньше расстояния между фокусами. Если поместить фокусы гиперболы в точках F1 (с; 0) и F2(- с; 0), то получится каноническое уравнение гиперболы

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

ПЛОСКОСТЬ И ПРЯМАЯ

плоскости,называемый нормальным вектором.

Поверхность второго порядка

Поверхность второго порядка - геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида

в котором по крайней мере один из коэффициентов , , , , , отличен от нуля.

Типы поверхностей второго порядка

Цилиндрические поверхности

Поверхность называется цилиндрической поверхностью с образующей , если для любой точки этой поверхности прямая, проходящая через эту точку параллельно образующей , целиком принадлежит поверхности .

Теорема (об уравнении цилиндрической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность имеет уравнение , то - цилиндрическая поверхность с образующей, параллельной оси .

Кривая, задаваемая уравнением в плоскости , называется направляющей цилиндрической поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность называется цилиндрической поверхностью второго порядка .

Эллиптический цилиндр: Параболический цилиндр: Гиперболический цилиндр:
Пара совпавших прямых: Пара совпавших плоскостей: Пара пересекающихся плоскостей:

Конические поверхности

Коническая поверхность.

Основная статья: Коническая поверхность

Поверхность называется конической поверхностью с вершиной в точке , если для любой точки этой поверхности прямая, проходящая через и , целиком принадлежит этой поверхности.

Функция называется однородной порядка , если выполняется следующее:

Теорема (об уравнении конической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , где - однородная функция, то - коническая поверхность с вершиной в начале координат.

Если поверхность задана функцией , являющейся однородным алгебраическим многочленом второго порядка, то называется конической поверхностью второго порядка .

· Каноническое уравнение конуса второго порядка имеет вид:

Поверхности вращения ]

Поверхность называется поверхностью вращения вокруг оси , если для любой точки этой поверхности окружность, проходящая через эту точку в плоскости с центром в и радиусом , целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , то - поверхность вращения вокруг оси .

Эллипсоид: Однополостной гиперболоид: Двуполостной гиперболоид: Эллиптический параболоид:

В случае, если , перечисленные выше поверхности являются поверхностями вращения.

Эллиптический параболоид

Уравнение эллиптического параболоида имеет вид

Если , то эллиптический параболоид представляет собой поверхность вращения, образованную вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью является эллипсом.

Пересечение эллиптического параболоида с плоскостью или является параболой.

Гиперболический параболоид ]

Гиперболический параболоид.

Уравнение гиперболического параболоида имеет вид

Пересечение гиперболического параболоида с плоскостью является гиперболой.

Пересечение гиперболического параболоида с плоскостью или является параболой.

Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».

Центральные поверхности

Если центр поверхности второго порядка существует и единственен, то его координаты можно найти, решив систему уравнений:

Таким образом, знак, который при этом приписывается минору соответствующего элемента определителя, пределяется следующей таблицей:

В приведенном выше равенстве, выражающем определитель третьего порядка,

в правой части стоит сумма произведений элементов 1-й строки определителя на их алгебраические дополнения.

Теорема 1. Определитель третьего порядка равен сумме произведений

элементов любой его строки или столбца на их алгебраические дополнения.

Эта теорема позволяет вычислять значение определителя, раскрывая его по

элементам любой его строки или столбца.

Теорема 2. Сумма произведений элементов какой-либо строки (столбца)

определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Свойства определителей.

1°. Определитель не изменится, если строки определителя заменить столб-

цами, а столбцы-соответствующими строками.

2°. Общий множитель элементов какой-нибудь строки (или столбца) может

быть вынесен за знак определителя.

3°. Если элементы одной строки (столбца) определителя соответственно

равны элементам другой строки (столбца), то определитель равен нулю.

4°. При перестановке двух строк (столбцов) определитель меняет знак на

противоположный.

5°. Определитель не изменится, если к элементам одной строки (столбца)

прибавить соответственные элементы другой строки (столбца), умноженные на одно и то же число (теорема о линейной комбинации параллельных рядов определителя).

Решение системы трех линейных уравнений с тремя неизвестными .

находится по формулам Крамера

При этом предполагается, что D ≠0 (если D = 0, то исходная система либо неопределенная, либо несовместная).

Если,система однородная, т. е. имеет вид

и ее определитель отличен от нуля, то она имеет единственное решение х= 0,

Если же определитель однородной системы равен нулю, то система сводится

либо к двум независимым уравнениям (третье является их следствием), либо к

одному уравнению (остальные два являются его следствиями). Первый случай

имеет место тогда, когда среди миноров определителя однородной системы есть

хотя бы один отличный от нуля, второй-тогда, когда все миноры этого опреде лителя равны нулю. В обоих случаях однородная система имеет бесчисленное множество решений.

Вычислить определитель третьего порядка



КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ

Кафедра «Автоматизации управления войсками»

Только для преподавателей

"Утверждаю"

Начальник кафедры № 9

полковник ЯКОВЛЕВ А.Б.

«____»______________ 2004 г.

доцент А.И.СМИРНОВА

"ОПРЕДЕЛИТЕЛИ.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"

ЛЕКЦИЯ № 2 / 1

Обсуждено на заседании кафедры № 9

«____»___________ 2004г.

Протокол № ___________

Кострома, 2004.

Введение

1. Определители второго и третьего порядка.

2. Свойства определителей. Теорема разложения.

3. Теорема Крамера.

Заключение

Литература

1. В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.

2. В.С. Щипачев, Высшая математика, гл.10, п.2.

ВВЕДЕНИЕ

На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.

1-ый учебный вопросОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО

ПОРЯДКА

Рассмотрим таблицу из четырех чисел вида

Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.

ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражение вида :

(1)

Числа а 11, …, а 22 называют э л е м е т а м и определителя.

Диагональ, образованная элементами а 11 ; а 22 называется г л а в н ой, а диагональ, образованная элементами а 12 ; а 21 -п о б о ч н ой.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

ПРИМЕРЫ. Вычислить:

Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:

ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида :

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:

" + " " – "

С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют

п р а в и л о м т р е у г о л ь н и к о в.

ПРИМЕРЫ. Вычислить по правилу треугольников:

ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.

2-ой учебный вопросСВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.

.

Раскрывая оба определителя, убеждаемся в справедливости равенства.

Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.

Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину .

.

Свойство 3. Общий множитель элементов строки (или столбца ) можно выносить за знак определителя.

.

Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.

Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.

Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.

D = - DÞ 2 D = 0 ÞD = 0.

Свойство 5. Если все элементы какой–то строки (или столбца ) равны нулю, то определитель равен нулю.

Это свойство можно рассматривать как частный случай свойства 3 при

Свойство 6. Если элементы двух строк (или столбцов ) определителя пропорциональны, то определитель равен нулю.

.

Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.

Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.

.

Доказывается непосредственной проверкой.

Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.

Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.

ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента а i j обозначается М i j . Так для элемента а 11 минор

Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.

ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1) k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.

Алгебраическое дополнение элемента а i j обозначается А i j .

Таким образом, А i j =

.

Выпишем алгебраические дополнения для элементов а 11 и а 12.

. .

Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс , если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус , если эта сумма нечетная .

ПРИМЕР. Найти миноры и алгебраические дополнения для элементов первой строки определителя:

Ясно, что миноры и алгебраические дополнения могут отличаться только знаком.

Рассмотрим без доказательства важную теорему – теорему разложения определителя.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Определитель равен сумме произведений элементов какой-либо строки или столбца на их алгебраические дополнения.

Используя эту теорему, запишем разложение определителя третьего порядка по первой строке.

.

В развернутом виде:

.

Последнюю формулу можно использовать как основную при вычислении определителя третьего порядка.

Теорема разложения позволяет свести вычисление определителя третьего порядка к вычислению трех определителей второго порядка.

Теорема разложения дает второй способ вычисления определителей третьего порядка.

ПРИМЕРЫ. Вычислить определитель, используя теорему разложения.



error: Контент защищен !!