Дифференциально-диагностические (цветные) питательные среды. Виды питательных сред Для большинства бактерий применяется дифференциально диагностическая

Витаминов в точно установленных дозировках. В качестве источников азота в них используются аминокислоты. Достоинство этих сред в том, что они имеют постоянный состав, по ним можно определить потребности микробов в тех или иных питательных веществах.

Плотные питательные среды готовят из жидких с добавлением уплотнителя. В качестве уплотнителя обычно применяют агар-агар. Агар-агар - продукт, получаемый из морских водорослей, представляет собой желтоватый порошок или пластинки, содержит высокомолекулярные полисахариды , не расщепляется большинством микроорганизмов, не разрушается при автоклавировании, питательную ценность сред не изменяет, не подавляет рост микробов. Для иммунологических и бактериологических полей используется вымороженный, осветленный агар, который при кипячении или автоклавировании смеси порошка с водой расплавляется при температуре 85-100°С, а при охлаждении до 45-48°С образует гель.

Для приготовления, плотных питательных сред агар-агар добавляют в концентрации от 1,5 до 3%.

Простые среды.

Мясо-пептонный бульон (МПБ) является белковой основой всех сред.

Существует несколько способов приготовления МПБ:

а) на мясной воде с добавлением готового пептона - это так называемый мясо-пептонный бульон;

б) на переварах продуктов гидролиза исходного сырья при помощи ферментов (трипсина - бульон Хоттингера, пепсина - бульон Мартена).

Они удобны при транспортировке, могут длительно храниться, избавляют лаборатории от громадного процесса приготовления сред, приближают к разрешению вопроса о стандартизации сред. Медицинская промышлен-ность производит сухие среды Эндо, Левина, Плоскирева, висмутсульфит агар, питательный агар, углеводы с индикатором ВР и другие.

Термостаты

Для культивирования микроорганизмов используют термостаты.

Термостат - это аппарат, в котором поддерживают постоянную температуру. Прибор состоит из нагревателя, камеры, двойных стенок, между которыми циркулирует воздух или вода. Температура регулируется тер-морегулятором. Оптимальная температура для размножения большинства микроорганизмов 37°С.

Методика приготовления пластинчатого агара

МПА расплавляют на водяной бане, затем остужают до 50-55°С. Горлышко флакона обжигают в пламени спиртовки, открывают чашки Петри так, чтобы вошло горлышко флаконы, не прикасаясь к краям чашки, выливают 10-15 мл МПА, закрыв крышку, покачивают чашку, чтобы среда равномерно распределилась, оставляют на горизонтальной поверхности до застывания. После подсушивания чашки с пластинчатым агаром хранят на холоде.

Посев петлей

Стерильной остуженной петлей берут каплю материала, левой рукой приоткрывают один край чашки, вносят петлю внутрь и у противоположного края делают петлей несколько штрихов на одном месте, затем петлю отрывают и засевают материал параллельными штрихами от одного края чашки к другому с интервалом 5-6 мм. В начале посева, когда микробов на петле будет много, они дадут сливной рост, но с каждым штрихом микробов на петле остается все меньше, и они будут оставаться одиночными и давать изолированные колонии.

Посев по методу Дригальского

Этот метод используется при посеве материала, обильно обсемененного микрофлорой (гной, испражнения, мокрота). Для посева по методу Дригальского берут шпатель и несколько чашек (3-4). Шпатель - это инструмент, изготовленный из металлической проволоки или стеклянного дрота, загнутого в виде треугольника или Г-образно. Материал петлей или пипеткой вносят в первую чашку и равномерно распределяют шпателем по поверхности среды, этим же шпателем, не прожигая его, втирают материал в питательную среду во второй чашке, а затем - в третьей. При таком посеве в первой чашке будет сливной рост, а в последующих чашках вырастают изолированные колонии.

Выделение чистой культуры по Щукевичу

Для посева берут свежеприготовленную питательную среду с конденсатом. Исследуемый материал забирают петлей и вносят его осторожно, соблюдая правила асептики, не касаясь среды и стенок, в конденсационную воду. Бактерии с высокой подвижностью «выползают» на влажную поверхность скошенного агара.

В результате самостоятельной работы студент должен знать:

1. Классификацию, морфологию грибов, их методы изучения.

2. Классификацию и морфологию актиномицетов.

3. Правила противоэпидемических режимов и техники безопасности.

Уметь:

1. Дифференцировать микроорганизмы при микроскопии.

2. Микроскопировать окрашенные препараты.

3. Обеззараживать материал, обрабатывать руки дезинфирующими препаратами.

4. Приготавливать препараты из чистых культур.

Классификация питательных сред производится по их составу и назначению

1.По составу питательные среды делятся на простые и сложные

Различают группу сред общего назначения - простых. К этой группе относят мясо-пептонный бульон (простой питательный бульон), мясо-пептонный агар {простой питательный агар), питательный желатин. Эти среды применяются для выращивания многих патогенных микробов. Среды общего назначения, или простые питательные среды, готовятся обычно из гидролизатов с добавлением пептона и хлористого натрия. Их используют также как основу для приготовления сложных сред.

Также по составу выделяют белковые, безбелковые и минеральные среды. 2. По происхождению среды разделяют на искусственные и естественные (природные ).

Естественные питательные среды могут содержать компоненты животного (например, кровь, сыворотка, жёлчь) или растительного (например, кусочки овощей и фруктов) происхождения.

3.По назначению выделяют консервирующие среды (для первичного посева и транспортировки), среды обогащения (для накопления определённой группы бактерий), среды для культивирования {универсальные простые, сложные специальные и для токсинообразования), среды для выделения и накопления (консервирующие, обогащения и элективные) и среды для идентификации (дифференциальные и элективно-дифференциальные).

Консервирующие питательные среды предупреждают отмирание патогенов и подавляют рост сапрофитов. Наибольшее применение нашли глицериновая смесь, гипертонический раствор, глицериновый консервант с LiCl 2 , раствор цитрата натрия и дезоксихолата натрия.

Среды обогащения для бактерий

Среды обогащения (например, среда Китта-Тароцци, селенитовый бульон, тиогликолевая среда) применяют для накопления определённой группы бактерий за счёт создания условий, оптимальных для одних видов и неблагоприятных для других. Наиболее часто в качестве подобных агентов используют различные красители и химические вещества - соли жёлчных кислот, тетратионат Na+, теллурит К, антибиотики, фуксин, генциановый фиолетовый, бриллиантовый зелёный и др.

Также по назначению различают среды элективные, специальные и дифференциально-диагностические.

Среды элективные (селективные, избирательные, накопления, обогащения). Принцип создания элективных питательных сред основан на удовлетворении основных биохимических и энергетических потребностей того вида микроба, для культивирования которого они предназначены, или на добавление ингибиторов, подавляющих рост сопутствующей микрофлоры. Определенный состав и концентрация питательных веществ, микроэлементов, ростовых факторов при строго определённом значении pH или добавлении ингибиторов обеспечивают оптимальные условия для выращивания одного или нескольких видов микроорганизмов. При посеве на них материала, содержащего смесь различных микробов, раньше всего будет проявляться рост того вида, для которого среда будет элективной. Примером элективных сред являются желчный бульон, селенитовый бульон, среда Плоскирева – для выращивания микробов семейства кишечных, щелочная пептонная вода – для холерного вибриона.


Желчный бульон . К МПБ добавляют 10-20% бычьей желчи. Желчь подавляет рост коков и воздушной флоры, но благоприятна для размножения сальмонелл.

Селенитовый бульон . Состоит из фосфатного бульона с добавлением натриевой соли селенита, которая является ингибитором роста кокковой флоры, кишечной палочки, но не задерживает роста сальмонелл.

Среда Плоскирева . Плотная среда, содержащая ингибиторы кишечной палочки, коков, но благоприятная для роста шигелл и сальмонелл, размножение которых не тормозится бриллиантовым зелёным и желчными солями.

Пептонная вода . Содержит 1% пептона и 0,5% хлористого натрия. Среда является элективной для холерных вибрионов, т.к. они лучше других бактерий размножаются на “голодных средах”, особенно при щелочной реакции, потому что сами выделяют кислые продукты жизнедеятельности.

Специальные среды. Необходимы для культивирования бактерий, не растущих на простых питательных средах. Для некоторых организмов к простым питательным средам необходимо добавлять углеводы, кровь и др. дополнительные питательные вещества. Примерами простых питательных сред являются сахарный бульон и сахарный агар для стрептококка (готовится соответственно из МПБ и МПА, к которым добавляется 0,5-2% глюкозы).

Для пневмококков и менингококков специальной средой являются сывороточный бульон и сывороточный агар (для приготовления сывороточного бульона смешивают 1 часть МПБ с 2 частями свежей сыворотки, для получения, сывороточного агара к расплавленному МПА добавляется 10-25% стерильной лошадиной или бычьей сыворотки).

Дифференциально-диагностические среды используют для определения видовой принадлежности исследуемого микроба, основываясь на особенностях его обмена веществ. По своему назначению дифференциально-диагностические среды разделяют следующим образом:

1. Среды для выявления протеолитической способности микробов, содержащие в своем составе молоко, желатин, кровь и т.д.

2. Среды с углеводами и многоатомными спиртами для

обнаружения различных сахаролитических ферментов.

В состав дифференциально-диагностических сред, предназначенных для выявления сахаролитических свойств и окислительно-восстановительных ферментов, вводят индикаторы: нейтральную красную, кислый фуксин, бромтимоловый синий, водный голубой с розоловой кислотой (ВР). Изменяя свою окраску при различных значениях рН, индикатор указывает на наличие фермента и расщепление введённого в среду ингредиента.

Примеры дифференциально-диагностических сред:

Среда Эндо . Состоит из МПА с добавлением 1% лактозы и обесцвеченного сульфитом натрия основного фуксина (индикатор). Среда Эндо имеет слаборозовый цвет. Используется в диагностике кишечных инфекций для дифференциации бактерий, разлагающих лактозу с образованием кислых продуктов, от бактерий, не обладающих этой способностью. Колонии лактозопозитивных микробов (кишечная палочка) имеют красный цвет вследствие восстановления фуксина. Колонии лактозонегативных микроорганизмов - сальмонелл, шигелл и др. -бесцветны.

К дифференциально-диагностическим средам относятся короткий и развёрнутый пёстрый ряд . Он состоит из сред с углеводами (среды Гисса), МПБ, молока, мясопептонной желатины.

Среды Гисса готовятся на основе пептонной воды, к которой прибавляются химически чистые моно-, ди- или полисахариды (глюкоза, лактоза, крахмал и др.).

Для обнаружения сдвигов рН в результате образования кислот и разложения углевода в среды прибавляют индикатор. При более глубоком расщеплении углеводов образуются газообразные продукты (СО 2 , СН 4 и др.), которые улавливаются при помощи поплавков - маленьких пробирочек, опущенных в среду кверху дном. Среды с углеводами могут готовиться и плотными – с добавлением 0,5-1% агар-агара. Тогда газообразование улавливается по образованию пузырьков (разрывов) в столбике среды.

На МПБ, входящем в пёстрый ряд, обнаруживают продукты, образующиеся при расщеплении аминокислот и пептонов (индол, сероводород). Сероводород обнаруживается путем помещения в МПБ после засева культуры полоски фильтровальной бумаги, пропитанной раствором уксуснокислого свинца. При расщеплении аминокислот, содержащих серу, выделяется сероводород, бумажка чернеет за счёт образования сернистого свинца. Для определения индола можно использовать сложный индикатор. Индол образуется при расщеплении триптофана, и его можно обнаружить при добавлении к культуре, выращенной на МПБ, этого индикатора. При наличии индола МПБ окрашивается в зеленый или синий цвет.

В практических бактериологических лабораториях широко применяют микро- и экспресс-методы для ориентировочного изучения биохимических свойств микроорганизмов. Для этой цели существует множество тест-систем. Наиболее часто используют систему индикаторных бумаг (СИБ). СИБы представляют из себя диски фильтровальной бумаги, пропитанные растворами сахаров или других субстратов в сочетании с индикаторами. Такие диски опускают в пробирку с выросшей в жидкой питательной среде культурой. По изменению цвета диска с субстратом судят о работе фермента. Микро-тест системы для изучения идентификации энтеробактерий представлены одноразовыми пластиковыми контейнерами со средами, содержащими различные субстраты, с добавлением индикаторов. Посев чистой культуры микроорганизмов в такие тест-системы позволяет быстро выявить способность бактерий утилизировать цитраты, глюкозу, сахарозу, выделять аммиак, индол, разлагать мочевину, лизин, фенилаланин и т.д.

Питательный агар, а также основные дифференциально-диагностические среды выпускаются в настоящее время в виде сухих препаратов, содержащих все необходимые составные части. К таким порошкам нужно добавить только воду и сварить, а затем, после разливки, простерилизовать.

Дифференциально-диагностические среды - это специальные смеси питательных веществ, применяемые для определения видовой принадлежности микробов и изучения их свойств. При росте бактерий на дифференциально-диагностических средах протекают химические процессы, обусловленные наличием у микробной клетки различных . Одни из них способны расщеплять , другие - , третьи - вызывать реакции окисления и восстановления и т. д. Благодаря действию ферментов в дифференциально-диагностической среде происходят соответствующие изменения.

Дифференциально-диагностические среды можно разделить на четыре основные группы.


Рис. 1-6. Различные формы расщепления желатины. Рис. 7 - 9. Жидкая среда с углеводом и индикатором Андраде: рис. 7 - отсутствие ферментации; рис. 8 - ферментация с образованием кислоты; рис. 9 - ферментация с образованием кислоты и газа. Рис. 10 - 12. Полужидкая среда с углеводом и индикатором BP (из сухой питательной среды): рис. 10 - отсутствие ферментации; рис. 11 - ферментация с образованием кислоты; рис. 12 - ферментация с образованием кислоты и газа. Рис. 13-15. Искусственная лакмусовая сыворотка по Зейтцу: рис. 13 - отсутствие ферментации; рис. 14 - ферментация с образованием кислоты; рис. 15 - ферментация с образованием . Рис. 16 и 17. Молоко с метиленовым синим: рис. 16 - отсутствие редукции; рис. 17 -редукция. Рис. 18 и 19. Среда Симонса: рис. 18 -отсутствие ассимиляции цитрата; рис. 19 - ассимиляция цитрата. Рис. 20 - 24. Лакмусовое молоко: рис. 20 - отсутствие ферментации; рис. 21 - ферментация с образованием кислоты; рис. 22 - ферментация с образованием щелочи; рис. 23 - пептонизация; рис. 24 - редукция. Рис. 25. Разжижение свернутой (в проходящем свете). Рис. 26. Гемолиз на кровяном агаре (в проходящем свете). Рис. 27. Кровяная среда с теллуритом калия.

1. Среды, содержащие белок и выявляющие способность микробов расщеплять белки (протеолитические Свойства): мясо-пептонная «столбиком», свернутая лошадиная или бычья сыворотка, молоко, кровяной агар. При посеве бактерий проколом в мясо-пептонную желатину, «столбиком» в случае расщепления белка наблюдают разжижение среды. При посеве на среду со свернутой сывороткой расщепление белка определяют по разжижению среды и образованию углублений на ее поверхности. Расщепление микробом молока выявляется просветлением или растворением первоначально свернувшегося молока. Наличие гемолитической активности исследуемой культуры проверяют посевом ее в на специальный кровяной агар. В результате разрушения вокруг колоний (например, гемолитического или ) образуются зоны просветления.

2. Среды для выявления способности микробов расщеплять углеводы и высокоатомные (Эндо среда, Левина среда, Расселла среда, Дригальского - Конради среда, Рапопорт - Вайнтрауба среда, Шустовой среда). Для выявления этих свойств микроорганизмов применяют также «пестрый» ряд, т. е. серию пробирок, содержащих , включающие различные углеводы, многоатомные спирты и индикатор. В качестве индикаторов пользуются лакмусовой настойкой или бромтимоловым синим. Разложение какого-либо из углеводов с образованием кислоты выявляют по изменению цвета индикатора, образование газа- по заполнению газом и всплыванию специального стеклянного поплавка в жидкой среде. Или применяют полужидкие Гисса среды (см.) с 0,5% агара с соответствующими сахарами и индикатором Андраде. После посева микроба на эти среды образование кислоты выявляют покраснением среды, а образование газа - по появлению его пузырьков в агаре или по разрыву и сдвигу вверх агарового столбика. К дифференциально-диагностическим средам второй группы относят также крахмальный агар, служащий для определения способности микробов расщеплять крахмал, среду Кларка и др.

3. Среды, на которых выявляется способность микробов обесцвечивать красители, добавленные к бульону: метиленовый синий, тионин, лакмус, нейтральный красный или другие (среда Ротбергера, среда Омелянского). К третьей группе относят также среды с нитратами, служащие для определения способности микробов восстанавливать соли азотной кислоты (нитраты) в соли азотистой кислоты (нитриты) и далее в аммиак или свободный азот.

4. Среды, выявляющие способность микробов усваивать вещества, которые не усваиваются другими микробами, например среда с лимоннокислым натрием (цитратный агар Симонса) для отличия кишечной палочки, которая лишена способности ассимилировать эту среду, от других бактерий кишечной группы или среда с олеиновокислым натрием для дифференциации дифтерийной палочки от ложно дифтерийной и дифтероидов (агар Энжеринга).

К дифференциально-диагностическим средам относят также среды для дифференциации анаэробов, теллуритовые среды для дифференциации дифтерийных бактерий, среды с мочевиной, щелочные среды (Дьедонне агар) для культивирования холерного вибриона и др. См. также Идентификация микробов.

Функции ЦПМ.

1. защитная.

2. локализация ферментов ЦПЭ.

12. Бактериальный нуклеоид содержит:

2. полиамины.

13. У бактерий есть:

1. одна хромосома.

2. две хромосомы.

14. Бактериальная хромосома:

1. кольцевая.

2. фиксированная к ЦПМ.

15. Спорообразование у бактерий:

1. происходит во внешней среде.

2. служит для размножения.

16. Споры:

1. окрашиваются по Граму.

17. Значение капсулы:

1. защитное.

2. формообразующие.

18. Капсулы:

1. окрашиваются по Граму.

2. видны при окраске по Граму.

19. Капсулы защищают бактерии от:

1. антител

2. фагоцитоза.

20. Жгутики:

1. есть у всех бактерии.

2. всегда располагаются по все поверхности.

21. Жгутики состоят из:

1. белков.

2. углеводов.

22. Жгутики:

1. окрашиваются по Граму.

2. окрашиваются по Бури Гинсу.

23. Подвижность бактерий изучают:

1. посевом в полужидкий агар.

2. посевом на МПА.

24. Реснички(пили):

1. есть у всех бактерий.

2. функционально различны

25. Изучение совокупности большого числа признаков бактерий необходимо для:

1. геносистематики.

2. нумерической таксономии.

26. Конечная таксономическая еденица в бактериологии :

27. Основные морфологические формы бактерий:

2. извитые.

28. Компоненты ЛПС бактерии:

1. липид А.

2. полисахарид.

29. В состав пептидогликана входят:

1. тейхоевые кислоты.

2. N- ацетилглюкозамин и M- ацетилмурановая кислота.

30. Тинкториальные свойства бактерий характеризуют:

1. устойчивость во внешней среде.

2. чувствительность к фагам.

Сложные методы окраски..

1. окраска по Уилю-Нельсену.

2. окраска по Нейссеру.

Методы микроскопии для изучения строения внутренних структур бактериальных клетку.

1. фазово-контрастная.

2. электронная

33. Нуклеоид бактерии:

1. связан с ЛПС.

2. не имеет ядерной мембраны.

34. Для окраски спор у бактерий используют:

1. окраску по Бури- Гинсу.

2. окраска по Клейну.

35. Некультивируемые формы бактерий выявляют с помощью питательной среды:

36. Метаболизм бактерий:

1. не отличается от метаболизма жив. клеток.

2. более интенсивнее чем метаболизм жив. клеток.

37. Аэробный распад белка обозначается термином:

1. брожение.

2. тление.

38. Анаэробный распад белка обозначается термином:

1.окисление.

2. гниение.

39. СО 2 в качестве единственного источника углевода используют:

1. автотрофы.

2. паратрофы.

40. Органические источники углеводов используют:

1. гетеротрофы

2. автотрофы

41. Неорганические источники углеводов используют:

1. метатрофы.

2. ауксотрофы.

42. Зависимость бактерии от того или иного субстрата обозначается термином:

1. прототрофность.

2. гетеротрофность

43. Размножение бактерии происходит:

1. почкование.

2. осмосом.

44. Активный транспорт идет:

1. по градиенту концентрации.

45. Пассивный транспорт идет:

1. по градиенту концентрации.

2. против градиента концентрации.

46. ЦПЭ у бактерии локализована в:

1. клеточной стенке.

47. Простая питательная среда:

1. сахарный бульон.

48. Сложная питательная среда:

1. сахарный бульон.

49. Элективные питательные среды позволяют:

1. дифференцировать одни виды бактерии от других.

2. культивировать бактерии одного вида.

50. Дифференциально - диагностические среды позволяют:

1. культивировать бактерии со сложными питательными потребностями.

2. отличать один вид бактерии от других.

51. Требование, предъявляемое к питательным средам:

1. стерильность.

2. питательность.

52. Определение сахаролитической активности производят при посеве на:

2. среду Пешкова.

53. Простые питательные среды стерилизуют в:

1. термостате.

2. печи Пастера.

54. Среды с углеводами стерилизуют:

1. в печи Пастера.

2. в автоклаве при 0.5 атм.

55. Лабораторную посуду стерилизуют в:

1. термостате.

2. печи Пастера.

56. Оптимальная рН питательных сред для большинства патогенных бактерии:

Механизмы транспорта веществ в бактериальную клетку, которые проходят с затратой энергии.

1. пассивная диффузия.

2. активный транспорт.

Среды, применяемые для избирательного выделения чистой культуры бактерии

определенного вида из материалов, содержащих разнообразную микрофлору:

1. основные

2. дифференциально – диагностические.

Дифференциально- диагностические среды.

1. среда Гисса

60. Методы выделения чистых культур бактерий:

1. посев штрихом.

2. посев штрихом с обжигом петли.

61. Культуральные свойства бактерий:

1. внешний вид бактерий.

2. отношение к условиям культивирования.

62. Для определения протеолитической активности бактерии проводят следующие тесты:

1. на разжижение желатина.

2. на ферментацию глюкозы.

63. Этапы бактериологического исследования:

1. посев для выделения чистой культуры бактерий.

2. накопление чистой культуры бактерий.

64. Для определения вида бактерий необходимо изучение:

1. морфологических свойств

2. культуральных свойств.

65. Биохимические свойства бактерий- это:

1. способность бактерий расщеплять сложные питательные вещества.

2. способность расщеплять на синтетических питательных средах.

66. В состав нуклеоида входит:

2. полиамины.

67. Функцию регуляторных белков у бактерий выполняют:

1. гистоны.

2. полиамины.

68. Бактерий содержат:

1. гаплоидный набор хромосом.

2. диплоидный набор хромосом.

69. Бактериальная хромосома:

1. кольцевая.

2. свободно лежащая.

70. IS- последовательности:

1. обладают автономной репликацией.

2. несут структурные гены.

71. Подвижные генетические элементы:

1. IS- последовательности.

2. транспозоны.

72. Транспозоны:

73. Генетический материал бактерий содержится в:

1. хромосоме.

2. плазмидах.

74. Плазмиды содержат:

1. структурный ген

2. ген репликации

75. В бактериальной клетке:

2. несколько копий одной плазмиды.

76. Клетки сохраняют жизнеспособность при утрате:

1. плазмиды

2. хромосомы.

77. Клетки погибают при утрате:

1. плазмиды.

2. хромосомы.

78. Генотипическое выражение пола у бактерий связано с наличием:

1. Col- плазмиды.

2. Hey- плазмиды.

79. Штаммы с высокой донорской активностью называются:

1. Hfr- штаммы.

2. R- штаммы.

80. Модификации:

1. затрагивают генотип.

2. затрагивают фенотип.

81. Модификация – это проявление:

1. генотипической изменчивости.

2. фенотипической изменчивости.

82. Мутации:

1. затрагивают генотип.

2. затрагивают фенотип.

83. Генотипическая изменчивость:

1. мутации

2. модификации.

84. Механизм рекомбинации у бактерий:

1. транскрипция.

2. трансформация.

85. При рекомбинациях у бактерий:

1. образуется мерозигота.

2. меняется количество генетического материала.

86. Передача генетической информации умеренным фагом – это:

1. трансдукция.

2. трансформация

87. Популяция бактерий по тому или иному признаку:

1. гомогенная.

2. гетерогенная.

88. Изменение генотипа у бактерий может происходить:

1. по вертикали.

2. по горизонтали.

89. Генетические методы, используемые в диагностике:

1. ДНК- зондирование.

90. Цель ПУР диагностики:

1. выявление нуклеотидных последовательностей, кодирующих видовую принадлежности бактерий.

2. выявление нуклеотидных последовательностей, кодирующих основной фактор вирулентности данного вида микроорганизма.

91. Фаги – это:

1. вирусы бактерий.

2. токсины бактерий.

92. Свойства фага:

1. инфекционность.

2. фильтруемость.

93. Фаги содержат:

1. ДНК и РНК.

2. ДНК или РНК.

94. Для фагов характерен:

1. дизъюнктивный способ репродукций.

2. размножаются простым поперечным делением.

95. Фаги бывают:

1. умеренные.

2. вируальные.

96. Взаимодействие фага с бактериальной клеткой может происходить по типу:

1. продуктивной инфекции.

2. абортивной инфекции.

97. Лизогенные клетки отличаются от нелизогенных по:

1. устойчивости к УФ излучению.

2. чувствительность к гомологичному фагу.

98. Методы выделения фагов:

1. фильтрование через бактериальные фильтры.

2. посев на питательные среды.

99. Фаги можно обнаружить по:

1. задержке роста индикаторной культуры.

2. образованию негативных колоний.

100. Фани применяют для:

1. лечения.

2. профилактики.

101. При продуктивной фаговой инфекций:

1. бактериальная клетка погибает.

2. фаг размножается.

102. Вирулентные фаги вызывают:

1. лизис клетки.

2. лизогенную конверсию.

103. Умеренные фаги вызывают :

1. лизис клетки.

2. лизогенизацию бактерий.

104. Лизогенные бактерий содержат:

1. профаг.

2. S – элементы.

105. Профаг – это:

1. интегрированное состояние фага.

2. свободное состояние фага.

106. Фаги по специфичности делят на:

1. видовые.

2. вирулентные.

107. Для фаготипирования бактерии используют фаги:

1. поливалентные.

2. видовые.

108. Фаготипирование проводят с целью:

1. эпидемиологического анализа.

2. подбора фагов для лечения.

109. Видовые фаги используются:

1. в ходе бактериологического исследования.

2. при постановке ПЦР.

110. Практическое использование фагов основано на:

1. их специфичности.

2. способности вызывать лизис бактерии.

111. Наличие фага в фильтрате определяют путем:

1. нанесение на газон индикаторной культуры.

2. посев на питательную среду.

112. Высокой бактериальной обсеменностью характеризуется:

1. толстый кишечник

2. тонки кишечник.

113 На видовой состав микрофлоры индивидуума влияет:

1. возраст.

2. экологическая ниша.

114. Функции нормальной микрофлоры:

1. витаминообразующая.

2. гормонообразующая.

115. Дисбактериоз- это:

1. качественное изменение нормальной микрофлоры.

2. количественное изменение нормальной микрофлоры.

116. Причины дисбактериоза:

1. лучевая болезнь.

2. тяжелые инфекции.

117.Показатели дисбактериоза:

1. появление патогенных бактерии.

2. появление или увеличение числа редко встречающихся в норме микроорганизмов.

118.Методы лабораторной диагностики дисбактериоза:

1. количественный бактериологический

2. серологический.

119.Принципы коррекции дисбактериоза:

1. симптоматическая терапия.

2. антибиотики.

120.Препараты для коррекции дисбактериоза кишечника:

1. бификол.

2. бифидумбактерии.

Применяются для разграничения отдельных видов или групп микроорганизмов. Принцип построения этих сред основан на том, что разные виды микроорганизмов различаются между собой по биохимической активности вследствие неодинакового набора ферментов.

В состав ДДС входят:

1. Питательная основа, обеспечивающая размножение микроорганизмов

2. Определенный углевод - лактоза

3. Индикатор, изменение цвета которого свидетельствует о сдвиге pH среды в кислотную сторону, вследствие ферментации соответствующего углевода.

ДДС активно применяются для дифференциации видов микроорганизмов семейства кишечных.

Элективные питательные среды

Предназначены для избирательного выделения и накопления микроорганизмов определенного вида (или группы) из материалов, содержащих разнообразную постороннюю микрофлору. При создании этих сред исходят из биологических особенностей, которые отличают микроорганизмы от большинства других. Например, избирательный рост стафилококков наблюдается при повышенной концентрации соли, холерного вибриона - в щелочной среде.

Разлив сред

1. Агаровых сред в чашки Петри:

а) расплавить на водяной бане, остудить до 45-50ºС с МПА

б) поставить чашку крышкой вверх

в) сосуд до средой взять в правую руку, держа его у огня

г) левой рукой вынуть пробку, зажав ее мизинцем и ладонью

д) обжечь горлышко бутылки со средой и двумя пальцами левой руки слегка приоткрыть крышку

е) ввести под нее горлышко бутыли, не касаясь им края чашки и налить 15-20 мл. среды.

Если посев проводят в день разлива среды, то её необходимо подсушить в термостате 20-30 минут в разобранном виде, открыто стороной вниз. Если посев проводят на следующий день, то чашки не подсушивая заворачивают в ту же бумагу, в которой их стерилизовали и помещают в холодильник.

2. Агаровых среда в пробирки:

а) взять сосуд с расплавленной и остуженной до 45ºС средой

б) левой рукой взять пробирку

в) правой рукой извлечь пробку из пробирки, а левой рукой из сосуда со средой, зажав ее мизинцем и ладонью

г) обжечь края пробирки и сосуда со средой, внести в пробирку 3-5 мл среды

д) вновь обжечь горлышки емкостей, закрыть из пробками

Агаровые среды могут застывать в пробирках в виде:

1. Скошенного столбика

2. Комбинированного столбика

3. Столбика

Для получения скошенного и комбинированного столбика, пробирки с расплавленной агаровой массой укладывают в наклонном положении на специальную подставку, чтобы среда не заходила на 2/3 пробирки, не смачивала пробку. После застывания среды, пробирки ставят вертикально в штатив, дают стечь конденсату вниз. Пользоваться средой без конденсата нельзя. Ее следует снова растопить на водяной бане и скосить.

Мясо-пептонный агар



error: Контент защищен !!