Паркеты – замощение плоскости многоугольника. Узоры пенроуза и квазикристаллы Художественные композиции Матюшки Тейи Крашек привлекли огромное внимание представителей науки и искусства

В мире математики сенсация. Открыт новый вид пятиугольников , которые покрывают плоскость без разрывов и без перекрытий.

Это всего 15-й вид таких пятиугольников и первый, открытый за последние 30 лет.

Плоскость покрывается треугольниками и четырехугольниками любой формы, а вот с пятиугольниками все гораздо сложнее и интереснее. Правильные пятиугольники не могут покрыть плоскость, но некоторые неправильные пятиугольники могут. Поиск таких фигур уже сто лет является одной из самых интересных математических задач. Квест начался в 1918 году, когда математик Карл Рейнхард открыл пять первых подходящих фигур.

Долгое время считалось, что Рейнхард рассчитал все возможные формулы и больше таких пятиугольников не существует, но в 1968 году математик Р.Б.Кершнер (R. B. Kershner) нашел еще три, а Ричард Джеймс (Richard James) в 1975 году довел их число до девяти. В том же году 50-летняя американская домохозяйка и любительница математики Марджори Райс (Marjorie Rice) разработала собственный метод нотации и в течение нескольких лет открыла еще четыре пятиугольника. Наконец, в 1985 году Рольф Штайн довел число фигур до четырнадцати.

Пятиугольники остаются единственной фигурой, в отношении которой сохраняется неопределенность и загадка. В 1963 году было доказано, что существует всего три вида шестиугольников, покрывающих плоскость. Среди выпуклых семи-, восьми- и так далее -угольников таких нет. А вот с «пентагонами» пока не все ясно до конца.

До сегодняшнего дня было известно всего 14 видов таких пятиугольников. Они изображены на иллюстрации. Формулы для каждого из них приведены по ссылке .

В течение 30 лет никто не мог найти ничего нового, и вот наконец-то долгожданное открытие! Его сделала группа ученых из Вашингтонского университета: Кейси Манн (Casey Mann), Дженнифер Маклауд (Jennifer McLoud) и Дэвид вон Деро (David Von Derau). Вот как выглядит маленький красавчик.

«Мы открыли фигуру с помощью компьютерного перебора большого, но ограниченного количества вариантов, - говорит Кейси Манн. - Конечно, мы очень взволнованы и немного удивлены, что удалось открыть новый вид пятиугольника».

Открытие кажется чисто абстрактным, но на самом деле оно может найти практическое применение. Например, в производстве отделочной плитки.

Поиск новых пятиугольников, покрывающих плоскость, наверняка продолжится.

Помыслить немыслимое и утвердиться в том, что оно все-таки мыслимо – это явление геометрии.

А.Д.Александров

Класс: 8-9

Цели:

  • Формирование и развитие представлений учащихся о новых математических объектах и математических понятиях.
  • Развитие творческого интереса к математике.
  • Расширение математического кругозора учащихся.
  • Воспитание доброжелательности и взаимопомощи при совместной работе.

Задачи внеклассного занятия:

  • Практическое применение математических знаний при изучении новых математических объектов.
  • Развитие логического мышления и навыков исследовательской деятельности.
  • Знакомство с применением новых полученных знаний в современной науке.
  • Постановка вопросов для дальнейшего изучения темы.

Подготовка: работа в группах, каждая группа готовит модели правильных многоугольников, а также копии произвольных треугольников и четырехугольников.

Формы организации работы учащихся: фронтальная, групповая.

Формы организации работы учителя: руководящая, организационная, координирующая.

Технические условия: мультимедийный кабинет.

Используемое оборудование: компьютер, проектор, экран, CD-носитель.

Презентация «Паркеты – замощение плоскости многоугольниками».

Ход занятия.

Паркеты с древних времён привлекают к себе внимание людей. Ими застилали полы, покрывали стены комнат, украшали фасады зданий, использовали в декоративно-прикладном искусстве.
Хотя изучение паркетов не входит в школьную программу по математике, интерес к этой теме возник после решения простой школьной задачи: «Докажите, что из одинаковых плиток, имеющих форму равнобедренной трапеции, можно сделать паркет, полностью покрывающий любую часть плоскости». А какими еще многоугольниками можно замостить плоскость?

Правильные паркеты

Паркетом называется такое замощение плоскости многоугольниками, при котором вся плоскость оказывается покрытой этими многоугольниками и любые два многоугольника либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек.

Паркет называется правильным , если он составлен из равных правильных многоугольников.
Примеры правильных паркетов были известны ещё пифагорейцам. Они дают заполнение плоскости: квадратами, равносторонними треугольниками, правильными шестиугольниками.

Задание для учащихся: из имеющихся моделей правильных многоугольников составьте правильные паркеты.

Убедимся в том, что никакой другой правильный многоугольник паркета не образует. И здесь нам понадобится формула суммы углов многоугольника. Если паркет составлен из n -угольников, то в каждой вершине паркета будет сходитьсяk = 360°/ a n многоугольников, где a n угол правильного n -угольника. Легко найти, что a 3 = 60°, a 4 = 90°, a 5 = 108°,a 6 = 120° и 120° < a n < 180° при п > 7. Поэтому 360° делится нацело на a n только при п = 3; 4; 6.
Интересно, что среди правильного треугольника, квадрата и правильного шестиугольника, данного периметра, наибольшую площадь имеет шестиугольник. Это обстоятельство приводит в природе к тому, что форму правильных шестиугольников имеют пчелиные соты, поскольку пчёлы, строя соты, инстинктивно стараются сделать их возможно более вместительными, израсходовав при этом возможно меньше воска.

Полуправильные паркеты.

Расширим способы составления паркетов из правильных многоугольников, разрешив использовать в них правильные многоугольники с различным числом сторон, но так, чтобы вокруг каждой вершины правильные многоугольники располагались в одном и том же порядке. Такие паркеты называются полуправильными .

Задание для учащихся : из имеющихся моделей правильных многоугольников составьте полуправильные паркеты.

Для выяснения количества полуправильных паркетов нужно проанализировать возможные случаи расположения правильных многоугольников вокруг общей вершины. Для этого обозначим через a 1 ,a 2 … – углы правильных многоугольников, имеющих общую вершину. Расположим их в порядке возрастания a 1 < a 2 < … Учитывая, что сумма всех таких углов должна быть равна 360°, составим таблицу, содержащую возможные наборы углов и укажем соответствующие паркеты.
Таким образом, всего имеется 11 правильных и полуправильных паркетов.

Планигоны

Рассмотрим и другое обобщение - паркеты из копий произвольного многоугольника, правильные «по граням» (т. е. которые переводят любую за­данную плитку в любую другую). Многоугольники, которые могут быть плитками в этих паркетах, называются планигонами .
Ясно, что плоскость можно уложить копиями произвольного треугольника, но менее очевидно, что произвольный четырёхугольник - планигон. То же верно и для любого шестиугольника, противоположные стороны которого равны и параллельны.

Задание для учащихся : из имеющихся копий произвольных треугольников и четырехугольников составьте паркеты.

Все рассмотренные выше паркеты периодичны, т. е. в каждом из них можно выделить (и даже многими способами) составленную из нескольких плиток область, из которой параллельными сдвигами получается весь паркет.
Интерес учёных к таким конструкциям объясняется тем, что периодические замощения, особенно замощения пространства, моделируют кристаллические структуры.

Вопрос на перспективу: Существуют ли непериодические замощения?

Вместо заключения

Особый интерес представляет создание собственных паркетов – заполнение плоскости одинаковыми фигурами (элементами паркета) с помощью, например, осевой симметрии и параллельного переноса. Главное, что в основе построения лежит многоугольник, равновеликий элементу паркета.

Домашнее задание. Составить понравившийся паркет с помощью любых средств: от цветной бумаги до компьютерных технологий.

Список используемой литературы:

1. Атанасян Л.С. и др. Геометрия, 7-9.– М.: Просвещение, 2010.
2. Атанасян Л.С. и др. Геометрия: Доп. главы к шк. учеб. 8 кл.: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. – М.: Просвещение, 1996.
3. Атанасян Л.С. и др. Геометрия: Доп. главы к шк. учеб. 9 кл.: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. – М.: Просвещение, 1997.
4. Колмогоров А.Н. Паркеты из правильных многоугольников.//Квант, 1970, № 3.
5. Смирнов В.А. Компьютер помогает геометрии //Математика: Еженедельное учебно-методическое прил. к газ. «Первое сент.». – 2003, № 21.
6. Совертков П.И. и др. Геометрический паркет на экране компьютера.//Информатика и образование, 2000, № 9.
7. Энциклопедия для детей. Т.11.Математика/ Глав.ред. М.Д.Аксенова. – М.: Аванта+, 2008.

Пример замощения на гиперболической плоскости

Французский математик Михаэль Рао из Лионского университета закончил решение задачи о замощении плоскости выпуклыми многоугольниками. Препринт работы можно на странице ученого.

Многоугольник называется выпуклым, если все его углы меньше 180 градусов или, что то же самое, вместе с любой парой точек такой многоугольник содержит и отрезок, их соединяющий. Задача о замощении (еще ее называют задачей о паркете) формулируется так: пусть плоскость разбита на многоугольники так, что любые два многоугольника либо не имеют общих точек, либо имеют только граничные общие точки. Если все многоугольники такого разбиения одинаковы (то есть один в другой можно перевести композицией сдвига, поворота или осевой симметрии), то говорят, что многоугольник замощает плоскость. Задача звучит так: описать все выпуклые многоугольники, замощающие плоскость.

Используя некоторые комбинаторные рассуждения, можно доказать, что у такого многоугольника может быть только 3, 4, 5 или 6 сторон. Легко проверяется, что плоскость можно замостить любым трех- и четырехугольником. Об этом подробнее можно прочитать в нашем материале .

Чтобы описать все шестиугольники, обозначим их углы как A, B, C, D, E, F, а стороны как a, b, c, d, e, f. При этом считаем, что сторона a примыкает к углу A справа и все стороны и углы названы по часовой стрелке. В 60-е годы было доказано, что все шестиугольники, которыми можно замостить плоскость, принадлежат как минимум одному из трех классов (классы тут пересекаются, скажем, правильный шестиугольник принадлежит всем трем) :

  1. A + B + C = 360
  2. A + B + D = 360, a = d, c = e
  3. A = C = E = 120, a = b, c = d, e = f.


Все 15 известных пятиугольных замощений

Самый сложный случай - случай пятиугольного паркета. В 1918 году математик Карл Райнхардт описал пять классов таких паркетов, простейшим из которых был класс пятиугольников с условием, что найдется сторона, сумма примыкающих к которой углов равна 180 градусам. В 1968 году Роберт Кершнер нашел еще три таких класса, а в 1975 году Ричард Джеймс нашел еще один. Про открытие Джеймса написал журнал Scientific American, статью в нем увидела американская домохозяйка и математик-любитель Мардж Райс, которая вручную за 10 лет нашла еще 5 семейств.

Последнее продвижение в задаче о замощении произошло в августе 2015 года. Тогда математики из филиала Вашингтонского университета в Ботелле с помощью компьютерной программы 15-й класс пятиугольных паркетов. В своей новой работе Михаэль Рао свел задачу классификации пятиугольных паркетов к перебору 371 вариантов. Варианты он перебрал на компьютере и показал, что ничего, кроме 15-ти уже известных классов замощений, не существует. Тем самым он окончательно закрыл задачу о замощении.

Андрей Коняев

    Почему у человека некоторые органы - парные (например, легкие, почки), а другие - в одном экземпляре?

    Каустики - это вездесущие оптические поверхности и кривые, возникающие при отражении и преломлении света. Каустики можно описать как линии или поверхности, вдоль которых концентрируются световые лучи.

    Шабат Г. Б.

    Мы сейчас знаем о строении Вселенной примерно столько же, сколько древние люди знали о поверхности Земли. Точнее, мы знаем, что небольшая часть Вселенной, доступная нашим наблюдениям, устроена так же, как небольшая часть трёхмерного евклидова пространства. Иначе говоря, мы живём на трёхмерном многообразии (3-многообразии).

    Виктор Лаврус

    Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

    Документальный фильм «Измерения» - это два часа математики, постепенно выводящие вас в четвёртое измерение.

    Сергей Стафеев

    Самой наукоемкой задачей древних народов была ориентация в пространстве и во времени. В том числе для этого человечеством с незапамятных времен воздвигались многочисленные мегалитические сооружения - кромлехи, дромосы, дольмены и менгиры. Были изобретены невероятно остроумные приспособления, позволившие отсчитывать время с точностью до минут или визировать направления с погрешностью не более полградуса. Мы покажем, как на всех континентах люди создавали ловушки для солнечных лучей, строили храмы, как-бы "нанизанные" на астрозначимые направления, рыли наклонные туннели для дневных наблюдений за звездами или воздвигали обелиски-гномоны. Невероятно, но наши далекие предки, например, умудрялись следить не только за солнечными или лунными тенями, но даже за тенью от Венеры.

Несложно замостить плоскость паркетом из правильных треугольников, квадратов или шестиугольников (под замощением мы понимаем такую укладку, при которой вершины каждой фигуры прикладываются только к вершинам соседних фигур и не возникает ситуации, когда вершина приложилась к стороне). Примеры таких замощений приведены на рис. 1.

Никакими другими правильными n -угольниками покрыть плоскость без пробелов и наложений не получится. Вот как можно это объяснить. Как известно, сумма внутренних углов любого n -угольника равна (n – 2) · 180°. Поскольку все углы правильного n -угольника одинаковые, то градусная мера каждого угла есть . Если плоскость можно замостить такими фигурами, то в каждой вершине сходится k многоугольников (для некоторого k ). Сумма углов при этой вершине должна составлять 360°, поэтому . После нескольких простых преобразований это равенство превращается в такое: . Но, как легко проверить, последнее уравнение имеет только три пары решений, если считать, что n и k натуральные числа: k = 3, n = 6; k = 4, n = 4 или k = 6, n = 3. Этим парам чисел как раз и соответствуют приведенные на рис. 1 замощения.

А какими другими многоугольниками можно замостить плоскость без пробелов и наложений?

Задача

а) Докажите, что любым треугольником можно замостить плоскость.

б) Докажите, что любым четырёхугольником (как выпуклым, так и невыпуклым) можно замостить плоскость.

в) Приведите пример пятиугольника, которым можно замостить плоскость.

г) Приведите пример шестиугольника, которым нельзя замостить плоскость.

д) Приведите пример n -угольника для какого-либо n > 6, которым можно замостить плоскость.

Подсказка 1

В пунктах а), в), д) можно попытаться составить из одинаковых фигур «полоски», которыми потом легко замостить всю плоскость.

Пункт б): сложите из двух одинаковых четырехугольников шестиугольник, у которого противоположные стороны попарно параллельны. Такими шестиугольниками замостить плоскость уже достаточно просто.

Пункт г): используйте тот факт, что сумма углов при каждой вершине должна быть равна 360°.

Подсказка 2

В пункте д) можно попробовать действовать и по-другому: немного менять уже имеющиеся фигуры, чтобы получались новые замощения.

Решение

Примеры ответов изображены на рисунках.

в) Подойдет пятиугольник в форме домика:

г) Такими шестиугольниками плоскость замостить не получится: в «вырезанный» угол просто не влезет полностью никакая часть такого шестиугольника. По клеточкам это хорошо видно:

Можно придумать еще множество других шестиугольников, которыми нельзя замостить плоскость.

д) Вот пример двенадцатиугольника, которым можно замостить плоскость. Этот способ замощения получен как модификация обычной квадратной решетки (см. рис. 1, ii из условия):

Послесловие

Задача замощения плоскости одинаковыми фигурками без пробелов и наложений известна с древних времен. Один из ее частных случаев - вопрос о том, какими могут быть паркеты (то есть замощения плоскости правильными многоугольниками , причем не обязательно одинаковыми) и, в частности, правильные паркеты. Правильный паркет обладает таким свойством: при помощи параллельных переносов (сдвигов без вращений), которые переводят паркет в себя, можно совместить заранее выбранный узел с любым другим узлом паркета. На рис. 1 из условия изображены как раз правильные паркеты.

Не слишком сложно доказать, что существует всего 11 различных типов правильных паркетов (см. List of uniform tilings). Доказывается это примерно так же, как мы в условии задачи доказывали, что есть всего три типа паркета из одинаковых правильных многоугольников - градусные меры углов каждого правильного многоугольника известны, нужно лишь подобрать их так, чтобы в сумме получалось 360°, а это делается просто небольшим перебором вариантов. Существует много древних мозаик, в основу которых положены эти паркеты.

Мозаики из глины, камня и стекла (и паркеты из дерева и кафеля) - наиболее известное и понятное применение данной теории в жизни. Многие из нас могут убедиться в этом, зайдя к себе на кухню или в ванную. Будущие дизайнеры специально изучают математические паркеты, ведь они и их вариации часто используются в архитектуре и декоре.

Замощения встречаются и в природе. Кроме всем известных пчелиных сот наиболее яркие примеры - это геологические образования на мысе Столбчатом (остров Кунашир, большая гряда Курильских островов) и «Дорога гигантов» в Северной Ирландии.

Обобщение нашей задачи - замощение пространства - современный важный раздел кристаллографии, играющий важную роль в интегральной оптике и физике лазеров.

Как ни странно, до относительно недавних времен были известны только периодические замощения (которые полностью совмещаются с собой при некотором сдвиге и его повторениях). Однако в 1974 году английский ученый Роджер Пенроуз придумал непериодические мозаики, которые теперь называют в его честь мозаиками Пенроуза. Позднее (в 1984 году) подобные непериодические структуры были открыты в



error: Контент защищен !!