Генеральная совокупность и выборочный метод. Формулы средней ошибки выборки

Выборочное наблюдение

Понятие выборочного наблюдения

Выборочный метод используется, когда применение сплошного на­блюдения физически невозможно из-за огромного массива данных или экономически нецелесообразно. Физическая невозможность имеет ме­сто, например, при изучении пассажиропотоков, рыночных цен, семей­ных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением. Например, де­густация, испытание кирпичей на прочность и т.п. Выборочное наблю­дение используется также для проверки результатов сплошного.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весьих массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают п, во всей ГС – N. Отношение n/N называется относительный размер или доля выборки .

Качество результатов выборочного наблюдения зависит от репре­зентативности выборки, т.е. от того, насколько она представительна в ГС. Для обеспечения репрезентативности вы­борки необходимо соблюдать принцип случайности отбора единиц, который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая..

Способы формирования выборки

1. Собственно случайный отбор: все единицы ГС нумеруются, а выпавшие в результате жеребьевки номера соответствуют единицам, попавшим в выборку, причем число номеров равно запланированному объему выборки. На практике вместо жеребьевки используют генераторы случайных чисел. Данный способ отбора может быть повторным (когда каждая единица, отобранная в выборку, после проведения наблюдения возвращается в ГС и может быть вновь подвергнута обследованию) и бесповторным (когда обследованные единицы в ГС не возвращаются и не могут быть обследованы повторно). При повторном отборе вероятность попадания в выборку для каждой единицы ГС остается неизменной, а при бесповторном отборе она меняется (увеличивается), но для оставшихся в ГС после отбора из нее нескольких единиц, вероятность попадания в выборку одинакова.



2. Механический отбор: отбираются единицы генеральной совокупности с постоянным шагом N/п . Так, если она генеральная совокупность содержит 100 тыс.ед., а требуется выбрать 1 тыс.ед., то в выборку попадет каждая сотая единица.

3. Стратифицированный (расслоенным) отбор осуществляется из неоднородной генеральной совокупности, когда ее предварительно разбивают на однородные группы, после чего производят отбор единиц из каждой группы в выборочную совокупность случайный или механическим способом пропорционально их численности в генеральной совокупности.

4. Серий­ный (гнездовой)отбор: случайным или механическим способом вы­бирают не отдельные единицы, а определенные серии (гнезда), внутри которых производится сплошное наблюдение.

Средняя ошибка выборки

После завершения отбора необходимого числа единиц в выборку и регистрации предусмотренных программой наблюдения изучаемых признаков этих единиц, переходят к расчету обобщающих показателей. К ним относят среднюю величину изучаемого признака и долю единиц, обладающих каким-либо значением этого признака. Однако, если ГС произвести несколько выборок, определив при этом их обобщающие характеристики, то можно установить, что их значения будут различными, кроме того, они будут отличаться и от реального их значения в ГС, если такое определить с помощью сплошного наблюдения. Другими словами, обобщающие характеристики, рассчитанные по данным выборки, будут отличаться от их реальных значений в ГС, поэтому введем следующие условные обозначения (табл. 8).

Таблица 8. Условные обозначения

Разность между значением обобщающих характеристик выборочной и генеральной совокупностей называется ошибкой выборки, которая подразделяется на ошибку регистрации и ошибку репрезентативности . Первая возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательно­сти регистратора при заполнении анкет, формуляров и т.п. Она доста­точно легко обнаруживается и устраняется. Вторая возни­кает из-за несоблюдения принципа слу­чайности отбора единиц в выборку. Ее сложнее обнаружить и устранить, она гораздо боль­ше первой и потому ее измерение является основной задачей выборочного наблюдения.

Для измерения ошибки выборки определяется ее средняя ошибка по формуле (39) для повторного отбора и по формуле (40) – для бесповторного:

= ;(39) = . (40)

Из формул (39) и (40) видно, что средняя ошибка меньше у бес­повторной выборки, что и обусловливает ее более широкое применение.

Между показателями выборочной совокупности и искомыми показателями (параметрами) генеральной совокупности, как правило, существуют некоторые разногласия, которые называют ошибками выборки. Общая ошибка выборочной характеристики состоит из ошибок двух родов: ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации свойственны любому статистическому наблюдению и появление их может быть вызвано невнимательностью регистратора, неточностью подсчетов, несовершенством измерительных приборов и т.д.

Ошибки репрезентативности присущи только выборочному наблюдению и обусловлены самой его природой поскольку как бы тщательно и правильно не проводился отбор единиц средние и относительные показатели выборочной совокупности всегда будут в какой-то степени отличаться от соответствующих показателей генеральной совокупности.

Различают систематические и случайные ошибки репрезентативности. Систематические ошибки репрезентативности - это неточности, которые возникают вследствие несоблюдения условий отбора единиц в выборочную совокупность, не предоставление равной возможности каждой единице генеральной совокупности попасть в выборку. Случайные ошибки репрезентативности - это погрешности, которые возникают вследствие того, что выборочная совокупность точно не воспроизводит характеристики генеральной совокупности (среднее, долю, дисперсию и др.) в силу несплошного характера обследования.

При соблюдении принципа случайного отбора размер ошибки выборки прежде всего зависит от численности выборки. Чем больше численность выборки при прочих равных условиях, тем меньше величина ошибки выборки. При большой численности выборки отчетливее проявляется действие закона больших чисел, согласно которому: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии выборочные характеристики (средняя доля) будут сколь угодно мало отличаться от соответствующих генеральных характеристик.

Размеры ошибки выборки также непосредственно связаны со степенью варьирования изучаемого признака, а степень варьирования, как отмечалось выше, в статистике характеризуется размером дисперсии (рассеяния): чем меньше дисперсия, тем меньше ошибка выборки, тем более надежные статистические выводы. Поэтому на практике дисперсию отождествляют с ошибкой выборки.

Поскольку параметр генеральной совокупности есть искомая величина и он неизвестен, нужно ориентироваться не на конкретную ошибку, а среднюю из всех возможных выборок.

Если из генеральной совокупности отобрать несколько выборочных совокупностей, то каждая из полученных выборок даст разное значение конкретной ошибки.

Средняя квадратическая величина исчисленная из всех возможных значений конкретных ошибок (;) составит:

где *и - выборочные средние; х - генеральная средняя;)] - численность выборок по величине є1 = ~си - х.

Среднее квадратическое отклонение выборочных средних от генеральной средней называют средней ошибкой выборки.

Зависимость величины ошибки выборки от ее численности и от степени варьирования признака находит выражение в формуле средней ошибки выборки /и.

Квадрат средней ошибки (дисперсия выборочных средних) прямо пропорционален дисперсии Сто и обратно пропорционален численности выборки п:

где - дисперсия признака в генеральной совокупности.

Отсюда среднюю ошибку в общем виде определяют по формуле:

Итак, определив по выборке среднее квадратичное отклонение, можно установить значение средней ошибки выборки, величина которой, как следует из формулы, тем больше, чем больше вариация случайной величины и тем меньше, чем больше численность выборки.

Поэтому по мере роста объема выборки размер средней ошибки уменьшается. Если, например, нужно уменьшить среднюю ошибку выборки в два раза, то численность выборки следует увеличить в четыре раза, если надо уменьшить ошибку выборки в три раза, то объем выборки следует увеличить в девять раз и т. д.

В практических расчетах применяются две формулы средней ошибки выборки для средней и для доли.

При выборочном изучении средних показателей формула средней ошибки такая:

При изучении относительных показателей (частных признаков) формула средней ошибки имеет вид:

где г - доля признака в генеральной совокупности.

Применение приведенных формул средней ошибки предполагает, что известны генеральная дисперсия и генеральная доля. Однако в действительности эти показатели неизвестны и вычислить их невозможно из-за отсутствия данных относительно генеральной совокупности. Поэтому возникает потребность замены генеральной дисперсии и генеральной доли другими, близкими к ним, величинами.

В математической статистике доказано, что такими величинами могут быть выборочная дисперсия(ст) и выборочная доля (со).

С учетом сказанного формулы средней ошибки могут быть записаны так:

Эти формулы дают возможность определить среднюю ошибку при повторной выборке. Применения простой случайной повторной выборки в практике является ограниченным. Прежде всего практически нецелесообразно, а иногда невозможно повторное обследование тех же единиц. Применение бесповторного отбора вместо повторного диктуется также требованием повышения степени точности и надежности выборки. Поэтому на практике чаще используют способ бесповторного случайного отбора. По этому способу отбора единица совокупности, отобранная в выборку, в дальнейшем отборе не участвует. Единицы отбирают из генеральной совокупности, уменьшенной на количество ранее отобранных единиц. Поэтому в связи с изменением численности генеральной совокупности после каждого отбора и вероятности отбора для единиц, что остались, в формулы средней ошибки выборки вводится поправочный множитель

где N - численность генеральной совокупности; п - численность выборки. При достаточно большом значении N можно единицей в знаменателе пренебречь. Тогда

Следовательно, формулы средней ошибки выборки для бесповторного отбора для средней и для доли соответственно имеют вид:

Поскольку п всегда меньше М, то дополнительный множитель всегда меньше единицы. Следовательно, абсолютное значение ошибки выборки при бесповторном отборе всегда будет меньше, чем при повторном.

Если численность выборки достаточно велика, то величина 1 ^ близка к единице, а потому ею можно пренебречь. Тогда среднюю ошибку случайного бесповторного отбора определяют по формуле собственно-случайной повторной выборки.

Рассчитаем для нашего примера среднюю ошибку для урожайности и доли участков с урожайностью 25 ц/га и более.

Средняя ошибка выборки

а) средней урожайности ячменя

Средняя урожайность ячменя в генеральной совокупности х -Г^ = 25,1 ± 0,12 ц/га, то есть находится в пределах от 24,98 до 25,22 ц/га.

Доля участков с урожайностью 25 ц/га и более в генеральной совокупности р

Т-^Г = 0,80 ± 0,07, т.е. находится в пределах от 73 до 87%.

Средняя ошибка выборки показывает возможные отклонения характеристик выборочной совокупности от характеристик генеральной совокупности. Вместе с тем при проведении выборочного наблюдения перед исследователями часто стоит задача расчета не только средней ошибки, но и определение предельной возможной ошибки выборки. Зная среднюю ошибку, можно определить границы, за которые не выйдет величина ошибки выборки. Однако утверждать, что эти отклонения не превысят заданной величины, можно не с абсолютной достоверностью, а лишь с определенной степенью вероятности. Уровень вероятности, что принимается при определении возможных пределов, в которых содержатся значения параметров генеральной совокупности, называется доверительным уровнем вероятности.

Доверительная вероятность - это довольно высокая и, такая, что практически считается осуществленной в каждом конкретном случае, вероятность, что гарантирует получение надежных статистических выводов. Обозначим ее через Г а вероятность превысить этот уровень - а. Итак, а =1 - Р Вероятность а называют уровнем значимости (существенности), который характеризует относительное число ошибочных выводов в общем числе выводов и определяется как разница между единицей и доверительной вероятностью, что принимается.

Уровень доверительной вероятности устанавливает исследователь исходя из степени ответственности и характера задач, которые решаются. В статистических исследованиях в экономике чаще всего принимается уровень доверительной вероятности Г = 0,95; Р = 0,99 (соответственно уровень значимости а = 0,05; а = 0,01) реже Г = 0,999. Например, доверительная вероятность Г = 0,99 означает, что ошибка оценки в 99 случаях из 100 не превысит установленной величины и только в одном случае из 100 может достичь вычисленного значения, или превысить его.

Ошибка выборки, исчисленная с заданной степенью надежной вероятности, называется предельной ошибкой выборки Ер.

Рассмотрим, как устанавливается величина возможной предельной ошибки выборки. Величина ер связана с нормированным отклонением и, которое определяется как отношение предельной ошибки выборки ер к средней ошибки и:

Для удобства расчетов отклонения случайной величины от ее среднего значения обычно выражают в единицах среднего квадратического отклонения. Выражение

называют нормированным отклонением. в В статистической литературе и называют коэффициентом доверия, или коэффициентом кратности средней ошибки выборки.

Так, нормированное отклонение выборочной средней можно определить по формуле:

и _є_р_

Из выражения 1 можно найти возможную предельную ошибку выборки

ер = и/л.

Подставив вместо г. в ее значение, приведем формулы предельных ошибок выборки для средней и для доли при бесповторном случайном отборе:

Следовательно, предельная ошибка выборки зависит от величины средней ошибки и нормированного отклонения и равна ± кратному числу средних ошибок выборки.

Средняя и предельная ошибки выборки - именованные величины и выражаются в тех же единицах, что и средняя арифметическая и среднее квадратическое отклонения.

Нормированное отклонение функционально связано с вероятностью. Для нахождения значений и составлены специальные таблицы (доб.2), по которым можно найти значение и при заданном уровне доверительной вероятности и значения вероятности при известном и.

Приведем значения и и соответствующие им вероятности для выборок с численностью п > 30, что чаще всего используется в практических расчетах:

Следовательно, при и = 1 вероятность отклонения выборочных характеристик от генеральных на величину однократной средней ошибки выборки равна 0,6827. Это означает, что в среднем с каждой 1000 выборок 683 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более, чем на величину однократной средней ошибки. При и = 2 вероятность равна 0,9545. в Это означает, что с каждого 1000 выборок 954 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более чем на двукратную среднюю ошибку выборки и т.д.

Однако в связи с тем, что, как правило, проводится только одна выборка, то мы говорим, что, например, с вероятностью 0,9545 можно гарантировать, что размеры предельной ошибки не превысят двукратную среднюю ошибку выборки.

Математически доказано, что отношение ошибки выборки к средней ошибки, как правило, не превышает ± 3д при достаточно большой численности п, несмотря на то, что ошибка выборки может приобретать любые значения. Другими словами можно сказать, что при достаточно высокой вероятности суждения (Р = 0,9973) предельная ошибка выборки, как правило, не превышает трех средних ошибок выборки. Поэтому величину Ер = 3д можно принять за предел возможной ошибки выборки.

Определим для нашего примера предельную ошибку выборки для средней урожайности и доли участков с урожайностью 25 ц/га и более. Доверительный уровень вероятности примем равным Р = 0,9545. в По таблице (прил .2) найдем значения и = 2. Средние ошибки выборки для урожайности и доли участков с урожайностью 25 ц/га и больше были найдены ранее и соответственно составляли: Ц~ = ±0,12 ц/га; МР = ± 0,07.

Предельная ошибка средней урожайности ячменя:

Итак, разница между выборочной средней урожайностью и генеральной средней будет не больше 0,24 ц/га. Пределы средней урожайности в генеральной совокупности: х = х ±есть~ = 25,1 + 0,24, то есть от 24,86 до 25,34 ц/га.

Предельная ошибка доли участков с урожайностью 25 ц/га и более:

Следовательно, предельная ошибка в определении доли участков с урожайностью 25 ц/га и больше не превысит 14%, то есть удельный вес участков с указанной урожайностью в генеральной совокупности находится в пределах: г = а> ± ер = 0,80 ± 0,14, то есть от 66 до 94%.

На основании зарегистрированных в соответствии с программой статистического наблюдения значений признаков единиц выборочной совокупности рассчитываются обобщающие выборочные характеристики: выборочная средняя () и выборочная доля единиц, обладающих каким-либо интересующим исследователей признаком, в общей их численности (w ).

Разность между показателями выборочной и генеральной совокупности называется ошибкой выборки .

Ошибки выборки, как ошибки любого другого вида статистического наблюдения, подразделяются на ошибки регистрации и ошибки репрезентативности. Основной задачей выборочного метода является изучение и измерение случайных ошибок репрезентативности.

Выборочная средняя и выборочная доля являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок.

Средняя ошибка выборки (µ - мю) равна:

для средней ; для доли ,

где р - доля определенного признака в генеральной совокупности.

В этих формулах σ х 2 и р (1-р ) являются характеристиками генеральной совокупности, которые при выборочном наблюдении неизвестны. На практике их заменяют аналогичными характеристиками выборочной совокупности на основании закона больших чисел, по которому выборочная совокупность при достаточно большом объеме достаточно точно воспроизводит характеристики генеральной совокупности. Методы расчета средних ошибок выборки для средней и для доли при повторном и бесповторном отборах приведены в табл. 6.1.

Таблица 6.1.

Формулы расчета средней ошибки выборки для средней и для доли

Величина всегда меньше единицы, поэтому величина средней ошибки выборки при бесповторном отборе оказывается меньше, чем при повторном. В тех случаях, когда доля выборки незначительна и множитель близок к единице, поправкой можно пренебречь.

Утверждать, что генеральная средняя значения показателя или генеральная доля не выйдет за границы средней ошибки выборки можно лишь с определенной степенью вероятности. Поэтому, для характеристики ошибки выборки кроме средней ошибки рассчитывают предельную ошибку выборки (Δ), которая связана с гарантирующим ее уровнем вероятности.

Уровень вероятности (Р ) определяет величина нормированного отклонения (t ), и наоборот. Значения t даются в таблицах нормального распределения вероятностей. Наиболее часто используемые сочетания t и Р приведены в табл. 6.2.


Таблица 6.2

Значения нормированного отклонения t при соответствующих значениях уровней вероятности Р

t 1,0 1,5 2,0 2,5 3,0 3,5
Р 0,683 0,866 0,954 0,988 0,997 0,999

t - коэффициент доверия, зависящий от вероятности, с которой можно гарантировать, что предельная ошибка не превысит t -кратную среднюю ошибку. Он показывает, сколько средних ошибок содержится в предельной ошибке . Так, если t = 1, то с вероятностью 0,683 можно утверждать, что разность между выборочными и генеральными показателями не превысит одной средней ошибки.

Формулы для расчета предельных ошибок выборки приведены в табл. 6.3.

Таблица 6.3.

Формулы расчета предельной ошибки выборки для средней и для доли

После исчисления предельных ошибок выборки находят доверительные интервалы для генеральных показателей . Вероятность, которая принимается при расчете ошибки выборочной характеристики, называется доверительной. Доверительный уровень вероятности 0,95 означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы; вероятности 0,954 - в 46 случаях из 1000, а при 0,999 - в 1 случае из 1000.

Для генеральной средней наиболее вероятные границы, в которых она будет находится с учетом предельной ошибки репрезентативности, будут иметь вид:

.

Наиболее вероятные границы, в которых будет находится генеральная доля, будут иметь вид:

.

Отсюда, генеральная средняя , генеральная доля .

Приведенные в табл. 6.3. формулы используются при определении ошибок выборки, осуществляемой собственно случайным и механическим методами.

При стратифицированном отборе в выборку обязательно попадают представители всех групп и обычно в тех же пропорциях, что и в генеральной совокупности. Поэтому ошибка выборки в данном случае зависит главным образом от средней из внутригрупповых дисперсий. Исходя из правила сложения дисперсий можно сделать вывод, что ошибка выборки для стратифицированного отбора всегда будет меньше, чем для собственно случайного.

При серийном (гнездовом) отборе мерой колеблемости будет межгрупповая дисперсия.

При выборочном наблюдении должна быть обеспечена слу-чайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.

К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного рас-членения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного спосо-ба, например, с помощью таблицы случайных чисел. Случай-ный отбор -- это отбор не беспорядочный. Принцип случай-ности предполагает, что на включение или исключение объ-екта из выборки не может повлиять какой-либо фактор, кро-ме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущен-ных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной со-вокупности к числу единиц генеральной совокупности:

Так, при 5%-ной выборке из партии деталей в 1000 ед. объ-ём выборки п составляет 50 ед., а при 10%-ной выборке -- 100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате -- выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор «в чистом виде» применяет-ся в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину ко-личественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой сово-купности только наличием изучаемого признака).

Выборочная доля (w), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п:

Например, если из 100 деталей выборки (n =100), 95 деталей оказались стандартными =95), то выборочная доля

w =95/100=0,95 .

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки ? или, иначе говоря, ошибка репрезента-тивности представляет собой разность соответствующих выбо-рочных и генеральных характеристик:

*

*

Ошибка выборки свойственна только выборочным наблюде-ниям. Чем больше значение этой ошибки, тем в большей степе-ни выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути яв-ляются случайными величинами, которые могут принимать раз-личные значения в зависимости от того, какие единицы сово-купности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возмож-ных ошибок -- среднюю ошибку выборки.

От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определя-ется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки также зависит от степени варьи-рования изучаемого признака. Степень варьирования, как из-вестно, характеризуется дисперсией? 2 или w(1-w) -- для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка вы-борки, и наоборот. При нулевой дисперсии (признак не варь-ирует) средняя ошибка выборки равна нулю, т. е. любая еди-ница генеральной совокупности будет совершенно точно ха-рактеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степе-ни варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х,p) неизвестны, и следовательно, не представляется возмож-ным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).

Ш При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

* для средней количественного признака

* для доли (альтернативного признака)

Поскольку практически дисперсия признака в генеральной совокупности? 2 точно неизвестна, на практике пользуются значением дисперсии S 2 , рассчитанным для выборочной сово-купности на основании закона больших чисел, согласно кото-рому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики гене-ральной совокупности.

Таким образом, расчетные формулы средней ошиб-ки выборки при случайном повторном отборе будут следующие:

* для средней количественного признака

* для доли (альтернативного признака)

Однако дисперсия выборочной совокупности не равна диспер-сии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут прибли-женными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

Так как п/ (n -1) при достаточно больших п -- величина, близкая к единице, то можно принять, что, а следова-тельно, в практических расчетах средних ошибок выборки мож-но использовать формулы (форм. 5) и (форм. 6). И только в случаях ма-лой выборки (когда объем выборки не превышает 30) необхо-димо учитывать коэффициент п /(n -1) и исчислять среднюю ошибку малой выборки по формуле:

Ш X При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подко-ренное выражение умножить на 1-(n/N), поскольку в процес-се бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной вы-борки расчетные формулы средней ошибки выборки примут такой вид:

* для средней количественного признака

* для доли (альтернативного признака)

. (форм. 10)

Так как п всегда меньше N , то дополнительный множи-тель 1-(n/N ) всегда будет меньше единицы. Отсюда следу-ет, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. В то же время при сравнительно небольшом проценте выборки этот множитель близок к еди-нице (например, при 5%-ной выборке он равен 0,95; при 2%-ной -- 0,98 и т.д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (форм. 5) и (форм. 6) без указанного множителя, хотя выборку и организуют как бесповторную. Это имеет место в тех случаях, когда число единиц генеральной совокупности N неизвестно или безгра-нично, или когда п очень мало по сравнению с N , и по су-ществу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по ней-тральному признаку на равные интервалы (группы), произво-дится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематиче-ской ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокуп-ности предварительно располагают (обычно в списке) в опре-деленном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо по-казателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через оп-ределенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1: 0,02), при 5%-ной выборке -- каждая 20-я едини-ца (1: 0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. По-этому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной вы-борки (форм. 9), (форм. 10).

Для отбора единиц из неоднородной совокупности применя-ется, так называемая типическая выборка , которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении слож-ных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдель-ных отраслях экономики, производительности труда рабочих пред-приятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выбороч-ную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представи-тельство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки.

При определении средней ошибки типической выборки в ка-честве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки находят по формулам:

* для средней количественного признака

(повторный отбор); (форм. 11)

(бесповоротный отбор); (форм. 12)

* для доли (альтернативного признака)

(повторный отбор); (форм.13)

(бесповторный отбор), (форм. 14)

где - средняя из внутригрупповых дисперсий по вы-борочной совокупности;

Средняя из внутригрупповых дисперсий доли (альтернативного признака) по выборочной совокупности.

Серийная выборка предполагает случайный отбор из генераль-ной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюде-нию все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить не-сколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключе-ния единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Ш Среднюю ошибку выборки для средней количественного признака при серийном отборе находят по формулам:

(повторный отбор); (форм.15)

(бесповторный отбор), (форм. 16)

где r - число отобранных серий; R - общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют сле-дующим образом:

где - средняя i - й серии; - общая средняя по всей выбо-рочной совокупности.

Ш Средняя ошибка выборки для доли (альтернативного при-знака) при серийном отборе:

(повторный отбор); (форм. 17)

(бесповторный отбор). (форм. 18)

Межгрупповую (межсерийную) дисперсию доли серийной вы-борки определяют по формуле:

, (форм. 19)

где - доля признака в i -й серии; - общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмот-ренных ранее способов отбора применяется их комбинация (комбинированный отбор).

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называют ошибкой репрезентативности. Различают систематические и случайные ошибки выборки.

Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности.

Систематические ошибки могут быть связаны с нарушением правил отбора или условий реализации выборки.

Так, при обследовании бюджетов домашних хозяйств выборочную совокупность на протяжении более 40 лет строили на основе территориально-отраслевого принципа отбора, что было обусловлено основной целью бюджетного обследования – дать характеристику уровня жизни рабочих, служащих и колхозников. Выборочная совокупность распределялась по регионам и отраслям экономики РСФСР пропорционально общей численности занятых; для создания отраслевой выборки применяли типическую выборку с механическим отбором единиц внутри групп.

Главным критерием отбора была среднемесячная оплата труда. Принцип отбора обеспечивал пропорциональную представительность в выборочной совокупности работающих с различным уровнем заработной платы.

С появлением новых социальных групп (предпринимателей, фермеров, безработных) репрезентативность выборки нарушалась не только в силу различий со структурой генеральной совокупности, но и в связи с систематической ошибкой, которая возникала из-за несовпадения единицы отбора (работник) и единицы наблюдения (домохозяйство). Домохозяйство, имеющее более одного работающего члена семьи, имело и бо́льшую вероятность быть отобранным, чем домохозяйство, в составе которого был один работающий. Семьи, не имеющие занятых в обследуемых отраслях, выпадали из круга отбираемых единиц (домохозяйства пенсионеров, домохозяйства, существующие за счет индивидуальной трудовой деятельности, и т.п.). Оценка точности полученных результатов (границы доверительных интервалов, ошибки выборки) была затруднена, так как при построении выборки не использовались вероятностные модели.

В 1996–1997 гг. был внедрен принципиально новый подход к формированию выборки домашних хозяйств. В качестве основы для ее проведения использовали данные микропереписи населения 1994 г. Генеральную совокупность при отборе составили все типы домашних хозяйств, за исключением коллективных. А выборочную совокупность стали организовывать с учетом представительности состава и типов домашних хозяйств в пределах каждого субъекта РФ.

Измерение ошибок репрезентативности выборочных показателей основано на предположении о случайном характере их распределения при бесконечно большом числе выборок.

Количественную оценку надежности выборочного показателя используют, чтобы составить представление о генеральной характеристике. Это осуществляют либо на основе выборочного показателя с учетом его случайной ошибки, либо на основе выдвижения некоторой гипотезы (о величине средней дисперсии, характере распределения, связи) в отношении свойств генеральной совокупности.

Для проверки гипотезы оценивают согласованность эмпирических данных с гипотетическими.

Величина случайной ошибки репрезентативности зависит:

  • 1) от объема выборки;
  • 2) степени вариации изучаемого признака в генеральной совокупности;
  • 3) принятого способа формирования выборочной совокупности.

Различают среднюю (стандартную) и предельную ошибки выборки.

Средняя ошибка характеризует меру отклонений выборочных показателей от аналогичных показателей генеральной совокупности.

Предельной ошибкой принято считать максимально возможное расхождение выборочной и генеральной характеристик, т.е. максимум ошибки при заданной вероятности ее появления.

По данным выборочной совокупности можно оценить различные показатели (параметры) генеральной совокупности. Наиболее часто используют оценку:

  • – генеральной средней величины изучаемого признака (для многозначного количественного признака);
  • – генеральной доли (для альтернативного признака).

Основным принципом применения выборочного метода является обеспечение равной возможности для всех единиц генеральной совокупности быть отобранными в выборочную совокупность. При таком подходе соблюдается требование случайного, объективного отбора и, следовательно, ошибка выборки определяется прежде всего ее объемом (п ). С увеличением последнего величина средней ошибки уменьшается, характеристики выборочной совокупности приближаются к характеристикам генеральной совокупности.

При одинаковой численности выборочных совокупностей и прочих равных условиях ошибка выборки будет меньше в гой из них, которая отобрана из генеральной совокупности с меньшей вариацией изучаемого признака. Уменьшение вариации признака означает снижение величины дисперсии (– для количественного признака или – для альтернативного признака).

Зависимость величины ошибки выборки от способов формирования выборочной совокупности определяется по формулам средней ошибки выборки (табл. 5.2).

Дополним показатели табл. 5.2 следующими пояснениями.

Выборочная дисперсия несколько меньше генеральной, в математической статистике доказано, что

Таблица 5.2

Формулы расчета средней ошибки выборки мри различных способах отбора

Вид выборки

повторный для

бесповторный для

Собственно

случайная

(простая)

Серийная

(с равновеликими

Типическая (пропорционально объему групп)

Если выборочная совокупность имеет большой объем (т.е. п достаточно велико), то соотношение приближается к единице и выборочная дисперсия практически совпадает с генеральной.

Выборку считают безусловно большой при п > 100 и безусловно малой при п < 30. При оценке результатов малой выборки указанное соотношение выборочной и генеральной дисперсии следует принимать во внимание.

Они могут быть рассчитаны по следующим формулам:

где – средняя i -й серии; – общая средняя по всей выборочной совокупности;

где – доля единиц определенной категории в i -й серии; – доля единиц этой категории во всей выборочной совокупности; r – число отобранных серий.

4. Для определения средней ошибки типической выборки в случае отбора единиц пропорционально численности каждой группы в качестве показателя вариации выступает средняя из внутригрупповых дисперсий (– для количественного признака, для альтернативного признака). По правилу сложения дисперсий величина средней из внутригрупповых дисперсий меньше, чем величина общей дисперсии. Значение средней возможной ошибки типической выборки меньше, чем ошибка простой собственно-случайной выборки.

Часто используют комбинированный отбор: индивидуальный отбор единиц сочетают с групповым, типический отбор – с отбором сериями. При любом способе отбора с определенной вероятностью можно утверждать, что отклонение выборочной средней (или доли) от генеральной средней (или доли) не превысит некоторую величину, которую называют предельной ошибкой выборки.

Соотношение между пределом ошибки выборки (∆), гарантируемым с некоторой вероятностью F(t), и средней ошибкой выборки имеет вид: или , где t – коэффициент доверия, определяемый в зависимости от уровня вероятности F(t).

Значения функции F(t) и t определяются на основе специально составленных математических таблиц. Приведем некоторые из них, применяемые наиболее часто:

т

Таким образом, предельная ошибка выборки отвечает на вопрос о точности выборки с определенной вероятностью, величина которой зависит от значения коэффициента доверия t. Так, при t = 1 вероятность F(t ) отклонения выборочных характеристик от генеральных на величину однократной средней ошибки равна 0,683. Следовательно, в среднем из каждой 1000 выборок 683 дадут обобщающие показатели (среднюю, долю), которые будут отличаться от генеральных не более чем на величину однократной средней ошибки. При t = 2 вероятность F(t) равна 0,954, это означает, что из каждой 1000 выборок 954 дадут обобщающие показатели, которые будут отличаться от генеральных не более чем на двукратную среднюю ошибку выборки, и т.д.

Наряду с абсолютной величиной предельной ошибки выборки рассчитывают и относительную ошибку, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

На практике принято задавать величину ∆, как правило, в пределах 10% предполагаемого среднего уровня признака.

Расчет средней и предельной ошибок выборки позволяет определить пределы, в которых будут находиться характеристики генеральной совокупности:

Пределы, в которых с данной степенью вероятности будет заключена неизвестная величина изучаемого показателя в генеральной совокупности, называют доверительным интервалом, а вероятность F(t) доверительной вероятностью. Чем выше значение ∆, тем больше величина доверительного интервала и, следовательно, ниже точность оценки.

Рассмотрим следующий пример. Для определения среднего размера вклада в банке методом повторной случайной выборки было отобрано 200 валютных счетов вкладчиков. В результате установили, что средний размер вклада – 60 тыс. руб., дисперсия составила 32. При этом 40 счетов оказались до востребования. Необходимо с вероятностью 0,954 определить пределы, в которых находятся средний размер вклада на валютных счетах в банке и доля счетов до востребования.

Рассчитаем среднюю ошибку выборочной средней по формуле для повторного отбора

Предельная ошибка выборочной средней с вероятностью 0,954 составит

Следовательно, средний размер вклада на валютных счетах в банке находится в пределах тыс. руб.:

С вероятностью 0,954 можно утверждать, что средний размер вклада на валютных счетах в банке составляет от 59 200 до 60 800 руб.

Определим долю вкладов до востребования в выборочной совокупности:

Средняя ошибка выборочной доли

Предельная ошибка доли с вероятностью 0,954 составит

Таким образом, доля счетов до востребования в генеральной совокупности находится в пределах w :

С вероятностью 0,954 можно утверждать, что доля счетов до востребования в общем числе валютных счетов в банке составляет от 14,4 до 25,6%.

При конкретных исследованиях важно установить оптимальное соотношение между мерой надежности полученных результатов и величиной допустимой ошибки выборки. В связи с этим при организации выборочного наблюдения возникает вопрос, связанный с определением объема выборки, необходимого для получения требуемой точности результатов с заданной вероятностью. Расчет необходимого объема выборки проводится на основе формул предельной ошибки выборки в соответствии с видом и способом отбора (табл. 5.3).

Таблица 5.3

Формулы расчета численности выборки при собственно-случайном способе отбора

Продолжим пример, в котором представлены результаты выборочного обследования лицевых счетов вкладчиков банка.

Требуется установить, сколько необходимо обследовать счетов, чтобы с вероятностью 0,977 ошибка при определении среднего размера вклада не превысила 1,5 тыс. руб. Выразим из формулы предельной ошибки выборки для повторного отбора показатель численности выборки:

При определении необходимого объема выборки по приведенным формулам возникает трудность в нахождении значений σ2 и да, так как эти величины можно получить только после проведения выборочного обследования. В связи с этим вместо фактических значений данных показателей подставляют приближенные, которые могли быть определены на основе каких-либо пробных выборочных наблюдений или из аналитических предыдущих обследований.

В тех случаях, когда статистик знает среднее значение изучаемых признаков (например, из инструкций, законодательных актов и т.п.) или пределы, в которых этот признак варьируется, можно применить следующий расчет по приближенным формулам:

а произведение w(1 – w) заменить значением 0,25 (w = 0,5).

Чтобы получить более точный результат, принимают максимально возможное значение этих показателей. Если распределение признака в генеральной совокупности подчиняется нормальному закону, то размах вариации примерно равен 6σ (крайние значения отстоят в ту и другую сторону от средней на расстоянии 3σ). Отсюда , но если распределение заведомо асимметрично, то .

При любом виде выборки ее объем начинают рассчитывать по формуле повторного отбора

Если в результате расчета доля отбора (n ) превысит 5%, то проводят расчет по формуле бесповторного отбора.

Для типической выборки необходимо общий объем выборочной совокупности разделить между выделенными типами единиц. Расчет числа наблюдений из каждой группы зависит от названных ранее организационных форм типической выборки.

При типическом отборе единиц непропорционально численности групп общее число отбираемых единиц делят на число групп, полученная величина дает численность отбора из каждой типической группы:

где k – число выделенных типических групп.

При отборе единиц пропорционально численности типических групп число наблюдений по каждой группе определяют по формуле

где – объем выборки из i -й группы; – объем i -й группы.

При отборе с учетом вариации признака процент выборки из каждой группы должен быть пропорционален среднему квадратическому отклонению в этой группе (). Расчет численности () производят по формулам

При серийном отборе необходимую численность отбираемых серий определяют так же, как и при собственно-случайном отборе:

Повторный отбор

Бесповторный отбор

При этом дисперсии и ошибки выборки могут быть рассчитаны для средней величины или доли признака.

При использовании выборочного наблюдения характеристика его результатов возможна на основе сопоставления полученных пределов ошибок выборочных показателей с величиной допустимой погрешности.

В связи с этим возникает задача определения вероятности того, что ошибка выборки не превысит допустимой погрешности. Решение этой задачи сводится к расчету на основе формулы предельной ошибки выборки величины t.

Продолжая рассмотрение примера выборочного обследования лицевых счетов клиентов банка, найдем вероятность, с которой можно утверждать, что ошибка при определении среднего размера вклада не превысит 785 руб.:

соответствующая доверительная вероятность составит 0,95.

В настоящее время практика выборочного наблюдения включает статистические наблюдения, осуществляемые:

  • – органами Росстата;
  • – другими министерствами и ведомствами (например, мониторинг предприятий в системе Банка России).

Известное обобщение опыта по организации выборочных обследований малых предприятий, населения и домашних хозяйств представлено в Методологических положениях по статистике. В них дано более широкое понятие выборочного наблюдения, чем это рассмотрено выше (табл. 5.4).

В статистической практике используют все четыре типа выборок, представленных в табл. 5.4. Однако обычно отдают предпочтение описанным выше вероятностным (случайным) выборкам, являющимся наиболее объективными, так как по ним можно оценить точность получаемых результатов по данным самой выборки.

Таблица 5.4

Типы выборок

В выборках квазислучайного типа предполагается наличие вероятностного отбора на том основании, что специалист, рассматривающий выборку, считает его допустимым. Примером использования квазислучайной выборки в статистической практике является "Выборочное обследование малых предприятий по изучению социальных процессов в малом предпринимательстве", проведенное в 1996 г. в некоторых регионах России. Единицы наблюдения (малые предприятия) отбирались экспертно с учетом представительства отраслей экономики из уже сформированной выборки обследования финансово-хозяйственной деятельности малых предприятий (форма "Сведения об основных показателях финансово-хозяйственной деятельности малого предприятия"). При обобщении выборочных данных предполагалось, что выборочная совокупность сформирована методом простого случайного отбора.

Прямое использование суждения эксперта является наиболее общим методом намеренного включения единиц в выборку. Примером такого способа отбора является монографический метод, предполагающий получение информации только от одной единицы наблюдения, являющейся типичной, по мнению организатора обследования – эксперта.

Выборки, сформированные на основе направленного отбора, реализуются с помощью объективной процедуры, но без использования вероятностного механизма. Широко известен метод основного массива, при котором в выборку включают наиболее крупные (существенные) единицы наблюдения, обеспечивающие основной вклад в показатель, например суммарное значение признака, представляющего основную цель обследования.

В статистической практике часто применяют комбинированный метод статистического наблюдения. Сочетание сплошного и выборочного методов наблюдения имеет два аспекта:

  • чередование во времени;
  • одновременное их использование (часть совокупности наблюдают на сплошной основе, а часть – выборочно).

Чередование периодических выборочных со сравнительно редкими сплошными обследованиями или переписями необходимо для уточнения состава исследуемой совокупности. В дальнейшем эту информацию используют как статистическую основу выборочного наблюдения. Примерами могут служить переписи населения и выборочные обследования домашних хозяйств в промежутках времени между их проведениями.

В данном случае требуется решать следующие задачи:

  • – определение состава признаков сплошного наблюдения, обеспечивающих организацию выборки;
  • – обоснование периодов чередования, т.е. когда сплошные данные теряют актуальность и нужны затраты на их обновление.

Одновременное использование в рамках одного обследования сплошного и выборочного наблюдений обусловлено неоднородностью встречающихся в статистической практике совокупностей. В особенности это справедливо для обследований экономической деятельности совокупности предприятий, для которой характерны скошенные распределения изучаемых признаков, когда некоторое число единиц имеет характеристики, сильно отличающиеся от основной массы значений. В этом случае такие единицы наблюдают на сплошной основе, а другую часть совокупности – выборочно.

При данной организации наблюдений основными задачами выступают:

  • – установление их оптимальной пропорции;
  • – разработка способов оценки точности результатов.

Типичным примером, иллюстрирующим данный аспект применения комбинированного метода, является общий принцип проведения обследований совокупности предприятий, в соответствии с которым обследования совокупности крупных и средних предприятий проводят преимущественно сплошным методом, а малых – выборочным.

Дальнейшее развитие методологии выборочного наблюдения осуществляют как в сочетании с организацией сплошного наблюдения, так и через организацию специальных обследований, проведение которых диктуется необходимостью получения дополнительной информации для решения конкретных задач. Так, организация обследований в области условий и уровня жизни населения предусмотрена в двух аспектах:

Обязательными компонентами могут стать ежегодные исследования доходов, расходов и потребления (аналог обследования бюджетов домашних хозяйств), включающие также базовые показатели условий жизни населения. Ежегодно по специальному плану обязательные компоненты должны дополняться единовременными обследованиями (модулями) условий жизни населения, направленными на углубленное изучение какой-либо выбранной социальной темы из их общего числа (например, активы домашних хозяйств, здоровье, питание, образование, условия труда, жилищные условия, досуг, социальная мобильность, безопасность и др.) с различной периодичностью, определяемой потребностью в показателях и ресурсными возможностями.



error: Контент защищен !!