Вогнутое зеркало и принцип ферма. Геометрическая оптика и её законы

До сих пор мы рассматривали все соотношения геометрической оптики и законы действия оптических инструментов как следствие основных законов отражения и преломления света, сформулированных в § 8.

Однако, как показал около 300 лет назад Ферма, эти основные законы могут быть в свою очередь выведены из одного более общего принципа. Принцип Ферма утверждает, что свет распространяется по такому пути, при котором время, необходимое для прохождения света от одной точки до другой, имеет наименьшее или наибольшее значение (экстремум) 1).

Ферма считал свой принцип проявлением еще более общего принципа целесообразности: «природа всегда придерживается кратчайшего пути». Такое телеологическое толкование принципа Ферма было широко распространено в XVII и XVIII вв. и использовалось для доказательства существования бога. Однако, кроме всего прочего, такой трактовке резко противоречат все случаи, соответствующие наибольшему времени. Ниже показано, что принцип Ферма является просто одним из следствий волновой природы света, но справедлив только в области применимости методов геометрической оптики.

Если тело имеет показатель преломления то скорость света этом теле равна где с - скорость света в пустоте. Поэтому

время, в течение которого свет проходит расстояние I в среде с показателем преломления определяется соотношением

Произведение геометрического пути I на показатель преломления называют оптическим путем. Пусть свет проходит несколько сред с показателями преломления (рис. 39). Из точки А свет попадает в В по такому пути для которого время

имеет наибольшее или наименьшее значение.

Так как скорость света с в пустоте есть величина постоянная, то можно сформулировать принцип Ферма так: между точками оптический путь имеет минимальное или максимальное значение.

Из принципа Ферма легко вывести законы отражения и преломления.

Рис. 39. К принципу Ферма,

Рис. 40. Закон отражения как следствие принципа Ферма

В случае отражения оптический путь пропорционален геометрическому пути, так как распространение света происходит в одной среде. Поэтому применение принципа Ферма к отражению света сводится к решению чисто геометрических задач.

Пусть требуется найти кратчайший путь из точки при условии, что путь должен проходить через точку, лежащую на поверхности зеркала (рис. 40). Иначе говоря, требуется найти такую точку О на зеркале, чтобы путь был минимальным. Возьмем точку А, симметричную с А относительно поверхности зеркала Для любой точки отрезок следовательно, Отсюда становится очевидным, что искомой точкой будет точка О, лежащая на пересечении прямой В А

с поверхностью зеркала Из этого способа построения точки О получается закон отражения:

В то время как при отражении от плоского зеркала оптический путь имеет минимальное значение, в других случаях он может быть максимальным. Так, при отражении от вогнутых зеркал имеет место как наименьший оптический путь, так и наибольший. Пусть (рис. 41) - вогнутое зеркало, две точки, между которыми нужно найти оптический путь луча, отражающегося от зеркала

Рис. 41. При отражении от кривого зеркала оптический путь имеет иногда наименьшее, а иногда наибольшее значение.

Рис. 42. Вывод закона преломления из принципа Ферма.

Построим эллипсоид вращения с фокусами касательный к поверхности Из геометрического свойства эллипса следует, что все лучи, исходящие из А, собираются в точке В. Следовательно, искомый оптический путь проходит через точку касания Легко показать, что путь больше любого другого В самом деле, Последняя же сумма по геометрическому свойству эллипса равна Таким образом, рассмотренный случай дает пример наибольшего оптического пути. В случае вогнутого зеркала касательного к эллипсу снаружи, отражение происходит при минимальном оптическом пути, так же как в случае плоского зеркала и выпуклого

Когда свет проходит через границу (рис. 42) между двумя средами с показателями преломления то из условия минимума или максимума оптического пути

получается закон преломления:

где углы с нормалью к поверхности

Если величина имеет для светового луча экстремальное значение, то это значит, что величина при бесконечно малых изменениях формы луча не должна практически меняться. В данном случае наблюдается то же и в максимуме или минимуме обычной функции от какого-либо аргумента: бесконечно малые изменения аргумента не изменяют значения функции (производная равна нулю). Разница только в том, что величина зависит не от какого-либо аргумента, а от формы луча Проведем через точку С, бесконечно близкую к С, луч согласно сказанному длина оптического пути V для этого луча должна быть равна длине оптического пути

Иными словами,

Проведем из А и в окружности радиусами и тогда ввиду малости можно считать, что

или, пользуясь полученным выше соотношением:

Рассматривая треугольники и как прямоугольные, получим:

Подставив эти выражения и сократив на получим:

Если рассмотреть действие любой оптической системы, дающей изображения, То на первый взгляд кажется, что мы имеем дело с резким нарушением принципа Ферма. Свет от любой точки предмета до ее изображения распространяется по бесчисленному числу различных путей. Все лучи, вышедшие из светящейся точки, собираются в ее изображении, преломляясь и отражаясь различным образом.

Однако оказывается, что и здесь все находится в полном согласии с принципом Ферма. Частным случаем экстремума какой-либо величины является постоянство этой величины. Время прохождения света по всем лучам, образующим изображение точки, будет одно и то же. Задача становится неопределенной, мы не можем выбрать луча, соответствующего минимальному или максимальному времени, и сказать, что все остальные запрещены. Все лучи, идущие через оптическую систему, равновозможны с точки зрения принципа Ферма. Как было указано, если мы поместим источник в один фокус

эллиптического зеркала, то все лучи соберутся в другом фокусе. Из геометрических свойств эллипса прямо следует, что оптический путь от одного фокуса до другого по всем лучам будет один и тот же в согласии с принципом Ферма.

При прохождении линзы (положительной) центральный луч проходит меньший геометрический путь, чем краевые лучи, но, пользуясь формулой (5), можно показать, что оптические пути всех лучей будут равны. Этот результат вполне понятен, ибо чем короче световой луч (рис. 17), тем больший путь этот луч должен пройти в стекле, где свет распространяется медленнее, чем в воздухе. Вот это замедление света в стекле и компенсирует укорочение геометрического пути луча. Можно поступить наоборот и из постоянства оптических путей получить формулу (5).

Рис. 43. Астрономическая рефракция.

Все сказанное о равенстве оптических путей, конечно, справедливо только для случаев идеального изображения, когда светящейся точке соответствует точечное изображение. Если же система не сводит всех лучей, вышедших из точки, опять в одну точку, то, естественно, нарушается постоянство оптического пути по всем лучам. Чем хуже будет качество изображения, тем сильнее будут расходиться значения для различных оптических путей. В современной теории ошибок оптических инструментов, основанной Гамильтоном, мерилом качества оптической системы служит величина отклонений от постоянства оптических путей для различных лучей.

Особенно интересны применения принципа Ферма в оптике сред с непрерывно меняющимся показателем преломления.

В случае среды с непрерывно меняющимся показателем преломления условие максимума или минимума оптического пути может быть написано как условие максимума или минимума интеграла, выражающего сумму оптических путей

где элемент геометрического пути, показатель преломления - функция координат. Путь светового луча оказывается в этом случае криволинейным. Так, например, в земной атмосфере наблюдаются явления рефракции и миража, происходящие вследствие непрерывного изменения плотности, а следовательно, и показателя преломления воздуха. Так как плотность воздуха с высотой убывает, то рефракция искривляет световой луч, идущий от звезды (рис. 43), делает его падающим на землю более

отвесно, и поэтому наблюдатель видит звезду в точке 5, находящейся выше истинного положения звезды

Миражи наблюдаются при возникновении резких изменений плотности воздуха с высотой, которые вызываются Температурными условиями. Над раскаленным песком пустыни воздух сильно нагрет и плотность его мала. Поэтому до известной высоты в таких условиях может наблюдаться рост плотности воздуха с высотой, т. е. рост показателя преломления воздуха с высотой. Такое необычное изменение показателя преломления вызывает искривление светового луча, изображенное на рис. 44, а. Световой луч своей выпуклостью обращен к Земле, а не от Земли. В этом случае наблюдателю кажется, что световые лучи исходят от перевернутого предмета или что световые лучи отражаются от плоского зеркала. Это плоское зеркало воспринимается как большая водная поверхность.

Рис. 44. Происхождение миража

Наоборот, при резком убывании плотности воздуха с высотой световые лучи искривляются, так же как и при рефракции, но в гораздо большей степени. В результате световые лучи, идущие от предметов, лежащих за горизонтом, огибают Землю и попадают в глаз наблюдателя (рис. 44, б). Наблюдатель видит далекие предметы, и они ему кажутся близкими.

Таким же «миражем», по сути дела, является прием сверхдальней радиопередачи, происходящий в результате полного внутреннего отражения коротких радиоволн от ионосферы (т. II, § 91).

Кикоин А.К. Принцип Ферма //Квант. - 1984. - № 1. - С. 36-38.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Основу геометрической оптики, которая оперирует понятием «световой луч», составляют три закона - законы прямолинейного распространения, отражения и преломления света. В давние времена, когда были сформулированы эти законы, вопрос о природе света еще не стоял, и за понятием «луч» не скрывалось ничего физически реального.

В 20-х годах XIX в. было выяснено, что свет - это волна. Луч света стал просто прямой, перпендикулярной волновой поверхности и указывающей направление распространения световой волны. На основе волновых представлений можно легко получить законы отражения и преломления света. Так это и сделано в учебнике «Физика 10» (§§ 37 и 65). Однако в конце XIX - начале XX вв. стало ясно, что свет обладает не только волновыми, но и корпускулярными свойствами тоже. С точки зрения корпускулярной (квантовой) природы свет представляет собой поток элементарных световых частиц - фотонов. В однородной среде луч можно считать траекторией движения фотонов.

Но интересно, что задолго до этого был сформулирован удивительный принцип, из которого прямо следуют все основные законы распространения света. Принцип этот, найденный французским математиком Пьером Ферма (1601-1665) около 1660 года, гласит: из всех возможных путей между двумя точками свет проходит по тому, по которому время прохождения наименьшее .

Из принципа Ферма (так его обычно называют) следует, что в однородной среде (в такой среде скорость света всюду одинакова) свет должен распространяться прямолинейно: прямая - кратчайшее расстояние между двумя точками, следовательно, и время распространения - наименьшее.

Покажем теперь, что закон отражения света - тоже прямое следствие принципа Ферма.

Закон отражения света

Пусть ММ - плоское зеркало. В точке А находится источник света, и нас интересует, по какому пути свет, отразившись от зеркала, приходит из точки А в точку В (рис. 1).

На рисунке 1 показаны некоторые из возможных путей - АА’В , АСВ , АВ’В . Таких «маршрутов» для света можно изобразить бесчисленное множество. Они различны по длине, так что на их прохождение требуется различное время. Оно зависит от того, в какую точку зеркала упадет луч и, отразившись, направится в В .

Из простых геометрических соображений легко выяснить, куда именно должен упасть луч, чтобы время его прохождения по «маршруту» точка А - зеркало - точка В было наименьшим. На рисунке 2 представлен один из возможных путей - АСВ .

Опустим из точки В перпендикуляр на зеркало ММ и продолжим его по другую сторону зеркала до точки В’ , отстоящую от зеркала на расстоянии |ОВ’ | = |ОВ |. Проведем линию СВ’ . Получившиеся треугольники СОВ и СОВ’ равны друг другу, так как они прямоугольные, сторона ОС у них общая и |ОВ | = |ОВ’ |. Следовательно, || = |CВ’ |, откуда следует, что длина пути луча АСВ равна сумме длин от А до точки С падения луча на зеркало и от этой точки до токи В . Ясно, что эта сумма будет наименьшей, если точка С будет лежать на прямой, соединяющей точки А и В’ (рис. 3).

Тогда и сумма длин |АС | и |СВ |, то есть длина всего пути света, будет наименьшей, Наименьшим будет и время прохождения светом этого пути.

Из рисунка 3 видно, что ∠ ВСО = ∠ В’СО (треугольник ВСВ’ равнобедренный, поэтому СО - биссектриса угла при вершине), а ∠ В’СО = ∠ АСМ (как вертикальные). Это значит, что углы наклона падающего и отраженного лучей к зеркалу равны друг другу. В этом и состоит закон отражения света. Принято, однако, отсчитывать углы не от плоскости зеркала, а от нормали к ней в точке падения. Но ясно, что если равны углы i и i’ , то равны и углы α и γ - Закон отражения обычно записывается в виде

\(~\alpha = \gamma\) .

Закон этот, как мы видим, - следствие того, что свет как бы «выбирает» путь, который проходится за наименьшее время. Нетрудно видеть, что из принципа Ферма следует и утверждение, что луч падающий, луч отраженный и нормаль к зеркалу в точке падения лежат в одной плоскости. Если бы это было не так, то путь был бы длиннее и требовал бы большего времени.

Отметим еще одну важную особенность, связанную с отражением света от зеркала. Если в точке А (см. рис. 3) находится источник света, а в точке В - глаз, то глаз воспримет свет так, как будто бы источник света находится не в А , а в А’ , а зеркала вовсе нет. Если зеркало убрать, а источник перенести из А в А’ , то глаз не заметит такой замены.

Закон преломления света

Из принципа Ферма можно получить и закон преломления света (точнее - световых лучей). Здесь речь идет о переходе света из одной среды (среда I на рисунке 4) в другую (среда II ) через границу раздела между ними. Различие сред состоит в том, что в них различны скорости распространения света.

Мы рассмотрим случай, когда среда I - это вакуум, в котором скорость света равна с , а вторая среда - какое-то прозрачное вещество (например, стекло, вода и т. д.), в котором скорость света υ меньше, чем с : с > υ .

Между точками А в среде I и В в среде II также мыслимы бесчисленное множество путей, но, согласно принципу Ферма, свет «выбирает» тот из них, для прохождения которого нужно наименьшее время. Ясно, например, что путь АА’В не есть такой путь, потому что здесь свет проходит короткое (кратчайшее) расстояние в среде с большой скоростью и большое расстояние в среде с малой скоростью. Быть может, выгоднее путь АВ’В ? Здесь свет в среде с малой скоростью проходит минимальную часть пути, а наибольшая часть приходится на среду с большой скоростью. Но есть ли именно этот путь самый выгодный в смысле экономии времени? Может быть, выгоднее несколько удлинить путь в среде II с тем, чтобы сократить путь в среде I ? Словом, нужно найти, в какой точке свету (лучу) нужно пересечь границу раздела двух сред, чтобы время прохождения от А к В было наименьшим. Ясно, что эта точка лежит где-то между А’ и В’ (включая, возможно, и самую точку В’ ).

Обозначим расстояние между А’ и В’ через d . Если нужная нам точка С пересечения границы раздела находится на расстоянии х от А’ , то от В’ она отстоит на расстоянии d - х (см. рис. 4). Путь АС , проходимый светом в среде I , равен \(~\sqrt{y^2_1 + x^2}\), а время прохождения этого пути

\(~t_1 = \frac{\sqrt{y^2_1 + x^2}}{c}\) .

Путь СВ , проходимый светом в среде II , равен \(~\sqrt{y^2_2 + (x - d)^2}\), а время, нужное для прохождения этого пути,

\(~t_2 = \frac{\sqrt{y^2_2 + (x - d)^2}}{\upsilon}\) .

Общее время t определяется равенством

\(~t = t_1 + t_2 = \frac{\sqrt{y^2_1 + x^2}}{c} + \frac{\sqrt{y^2_2 + (x - d)^2}}{\upsilon}\) . (1)

Время t зависит только от х - координаты точки падения луча, так как величины y 1 , y 2 , с , υ и d - постоянные, то есть одинаковые при всех значениях х . Вот нам и нужно найти, при каком значении х время t будет наименьшим. Средствами обычной алгебры эту задачу решить нельзя. Чтобы ее решить, нужно воспользоваться тем, что при том значении х , при котором t минимально, производная функции, стоящей в правой части уравнения (1), равна нулю .

Это приводит нас к такому условию для х :

\(~\frac{x}{c\sqrt{y^2_1 + x^2}} = \frac{d - x}{\upsilon \sqrt{y^2_2 + (x - d)^2}}\) . (2)

Из рисунка 4 видно, что

\(~\frac{x}{\sqrt{y^2_1 + x^2}} = \sin \angle A"AC = \sin \alpha ; \frac{d - x}{\sqrt{y^2_2 + (x - d)^2}} = \sin \angle CBB" = \sin \beta\) .

где α - угол между падающим лучом и нормалью к границе раздела в точке падения (угол падения) и β - угол между этой нормалью и преломленным лучом (угол преломления). Условие (2) принимает поэтому вид:

\(~\frac{\sin \alpha}{c} = \frac{\sin \beta}{\upsilon}\) или \(~\frac{\sin \alpha}{\sin \beta} = \frac{c}{\upsilon}\) .

В этом и заключается закон преломления для нашего случая: отношение синуса угла падения к синусу угла преломления равно отношению скоростей распространения света в вакууме и в среде, которая с ним граничит. Отношение \(~\frac{c}{\upsilon}\) - величина постоянная, характерная для данной среды. Она называется показателем преломления вещества и обозначается буквой n , так что

\(~\frac{\sin \alpha}{\sin \beta} = n\) .

В общем случае, когда свет переходит из произвольной среды, в которой скорость света равна υ 1 , в среду со скоростью света в ней υ 2 , закон преломления имеет вид

\(~\frac{\sin \alpha}{\sin \beta} = \frac{\upsilon_1}{\upsilon_2} = n_{21}\) ,

где n 21 - относительный показатель преломления сред 2 и 1 .

Принцип Ферма справедлив, конечно, не только для тех простейших примеров отражения и преломления света, которые мы здесь рассмотрели. С помощью этого принципа можно понять и точно рассчитать ход лучей и в призме, и в линзе и в любой самой сложной системе призм, линз, зеркал.

Траектория по которой луч света из точки А, нкаходящейся в среде с показателем преломления n 1 , попадает в точку В, расположенную в среде с показателем преломления n 2, может быть разной, но нам нужно показать, что луч будет распространяться по такому пути, на который он затратит минимальное время.

Опустим из точек А и В перпендикуляры на границу раздела двух сред и расстояния от точек до границы раздела обозначим соответственно а 1 и а 2 .

Так как точка перехода луча из одной среды в другую зависит от того по какой траектории будет распространяться луч света, то расстояние от первого перпедикуляра до точки падения (см.рис 1.8) обозначим x. Расстояние между опущенными перпендикулярами обозначим b.

Оптический путь луча будет состоять из двух частей, так как он распространяется в двух разныз средах:

Так как время распространения света из точки А в точку B должно быть минимально, то оптический путь должен быть экстремален, т.е. первая производная оптического пути по времени должна быть равна нулю:

(1.11)

, а

Поэтому из условия (1,11) получаем

(1.12)

Т.е. закон преломления света доказан.

Полное внутреннее отражение, световоды (эндоскопы) .

Из формулы (1.12) видно, что при переходе света из оптически более плотной среды в оптически менее плотную луч удаляется от нормали к поверхности раздела сред. Увеличение угла падения сопровождается более быстрым ростом угла преломления ¦ и при некотором ¦ значении угла , котором преломленный луч пойдет по границе раздела двух сред, т.е. угол достигает значения равного , В этом случае угол падения называется предельным углом падения и определяется

(1.13)

Энергия, которую несет с собой падающий луч, распределяется между отраженным и преломленным лучами. По мере увеличения угла падения интенсивность отраженного луча растет, интенсивность же преломленного луча убывает, обращаясь в нуль при предельном угле. При углах падения, заключенных в пределах от предельного угла падения до , световая волна проникает во вторую среду на расстояние порядка длины волны l и затем возвращается в первую среду. Это явление называется полным внутренним отражением (см.рис.1.9).

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Проверьте на опыте будет ли свет от красной лампочки распространяться по изогнутой струе воды.

Явление полного внутреннего отражения лежит в основе волоконной оптики. Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль этого волокна. Диаметр этих тонких стеклянных или пластиковых волокон может быть доведен до нескольких микрометров. Для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в пучки (жгуты) – световоды, свет по световоду может передаваться почти без потерь. Рис1.10 демонстрирует, как распространяется свет по тонкому волокну, испытывая только скользящие отражения от стенок, т.е. претерпевая полное внутреннее отражение.

Если световоду придать сложную форму, то угол падения обычно превышает предельный, и свет будет передан от одного торца световода до другого практически без ослабления. Этот эффект используется в декоративных светильниках и при подсветке струй в фонтане. Волоконная оптика широко используется в медицине. Например, для визуального исследования внутренних полых органов используются гибкие гастроскопы, эндоскопы. С помощью световодов осуществляется передача лазерного излучения во внутренние ткани и органы с целью лечебного воздействия. На рис. 1.12 показаны различные способы подведения лазерного излучения к ткани: 1 - лазерный луч нацелен на ткань через систему диафрагм и линз; 2 - луч подводится через систему подвижных зеркал; 3 - луч проводится по гибкому пустотелому световоду с внутренней зеркальной поверхностью;

4 - луч проводится через гибкий кварцевый световод и дистанционно нацелен на ткань.

Рис. 1.12. Способы подведения лазерного излучения к ткани

Примером природной волоконнооптической системы является сетчатка человеческого глаза. Попадая на сетчатку, свет воспринимается светочувствительными элементами (волокнами двух типов: палочками и колбочками). Этот слой подобен волоконнооптическому устройству. У травянистых растений стебель играет роль световода, подводящего свет в подземную часть растения. Клетки стебля образуют параллельные колонки, напоминая этим конструкцию промышленных световодов. Если освещать такую колонку,рассматривая ее через микроскоп, то видно, что ее стенки при этом остаются темными, а внутренность каждой клетки ярко освещена. Глубина, на которую доставляется таким способом свет, не превышает 4-5 см. Но и такого короткого световода достаточно, чтобы обеспечить светом подземную часть травянистого растения.

Заключение

1. Итак, свет обладает свойствами электромагнитной волны и потока фотонов, свойства неразделимы и в одних явлениях преобладает одно свойство, а в других другое, что связано с длиной световой волны.

2. В анизотропной среде абсолютный показатель преломления зависит от направления распространения световой волны.

3. В законах геометрической оптике используются чисто математические представления о лучах, не рассматривается природа света, законы работают при l®0.

4. Принцип Ферма является наиболее общим законом геометрической оптике, из этого закона могут быть выведены законы отражения и преломления света. Принцип Ферма определяет оптический путь луча и обратимость хода лучей.

5. Закон полного внутреннего отражения позволяет понять принципы работы световодов (эндоскопов)

Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны.

Луч света распространяется прямолинейно, если на пути его распространения среда однородна, абсолютный показатель преломления среды везде одинаков. Однако, если показатель преломления среды плавно изменяется на трассе луча, траектория луча света искривляется (рис.1.2), причём луч смещается в сторону увеличения показателя преломления.

Рассмотрим ход лучей (рисунок 1.3), идущих от точки С (С- это точка, лежащая на Солнце, которое почти спряталось за горизонт). Луч искривляется, так как каждый последующий слой атмосферы имеет больший показатель преломления и в каждом последующем слое луч света приближается к перпендикуляру восстановленному в точку падения. Наблюдатель, находящийся в точке А, видит изображение Солнца в точке С 1 . Зашедшее Солнце за счет преломления остается видимым еще несколько минут, поэтому продолжительность дня оказывается на 7-8 минут больше, чем она была бы в отсутствии преломления. Сплюснутая форма Солнца при восходе и заходе объясняется, тем, что лучи, идущие от разных частей Солнца отклоняются от прямой линии на разные углы.


Рис.1.4
Рис.7

Миражи связаны с тем, что абсолютный показатель преломления в разных атмосферных слоях оказывается разным. Обычно наблюдается верхний или нижний мираж. Нижний мираж наблюдается в пустынях и в степях в теплое время года, когда прилегающий к земной поверхности слой воздуха сильно нагрет, а его плотность и показатель преломления быстро возрастают с высотой. На рисунке 1.4,а показано каким образом горячий песок позволяет видеть макушку дерева А. Луч света n преломляется при прохождении вниз от холодного к нагретому воздуху, следовательно, угол преломления будет возрастать, а линия, по которой свет распространяется, искривляется (рис.1.5. В точке В луч света испытает полное внутреннее отражение, преломленный луч исчезнет. Вся световая энергия сосредотачивается в отраженном луче, поэтому луч как бы изменил свое направление.

Рис.1.5

Поэтому, когда он попадает в глаз наблюдателя, то кажется, что он исходит из точки А ¢ , а не точки А.

Верхний мираж может наблюдаться близ воды. Так как около поверхности воды может находиться слой холодного воздуха, над которым расположен слой теплого воздуха.

В результате отдаленный корабль на море может казаться плавающим в небе, как показано на рисунке 1.4б., так как лучи света описывают большую дугу и возвращаются вниз за десятки километров от источника. С Лазурного берега иногда можно увидеть Корсику, расположенную за 200 километров оттуда. Жители бельгийского города Вервье в 1815 году увидели в небе целую армию. За сто километров от этого города в это утро произошла битва при Ватерлоо.

Закон независимости световых пучков утверждает, что лучи при пересечении не возмущают друг друга. Пересечения лучей не мешает каждому из них распространяться независимо друг от друга.

Если две изотропные среды с разными показателями преломления соприкасаются друг с другом, то между ними образуется граница раздела этих сред. Луч света, попадая на эту границу, частично отражается, частично преломляется (см. рис.1.6)

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред и равна отношению абсолютного показателя преломления второй среды относительно показателя преломления первой среды:

(1.8)

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом (1621 г.)

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Рис 1.6 иллюстрирует законы отражения и преломления света.

Принцип Ферма

В основу геометрической оптики может быть положен принцип, установленный французским математиком Ферма в середине 17 столетия. Из этого принципа вытекают законы прямолинейного распространения света, отражения и преломления света. В формулировке самого Ферма принцип гласит, что свет распространяется по такому пути, для прохождения которого ему требуется минимальное время.

Рис.1.7

Пусть луч распространяется из точки 1 в точку пространства 2 (рис.1.7). Разобьем траекторию распространения света на прямолинейные участки, на которых показатель преломления будет константой, тогда чтобы свету пройти путь требуется время

,

Следовательно, время, затрачиваемое светом на прохождение пути 1-2 равно

Величина имеет размерность длины и эту величину называют оптическим ходом луча или оптической длиной пути света

В однородной изотропной среде оптическая длина пути света равна

Пропорциональность времени t прохождения оптической длине пути луча L дает возможность сформулировать принцип Ферма следующим образом: свет распространяется по такому пути, оптическая длина которого экстремальна. Из принципа Ферма вытекает обратимость хода световых лучей. Действительно, оптический путь, который минимален в случае распространения света из точки 1 в точку 2, окажется минимальным и в случае распространения света из точки 2 в точку 1.

С помощью принципа Ферма можно доказать законы геометрической оптики, например, закон преломления света.

Век XVII был ознаменован бурным развитием в Европе специального раздела физики - оптики. Были открыты для света законы отражения и преломления, а принцип Ферма показал, почему они имеют соответствующий математический вид. Разберемся подробнее, что собой представляет этот принцип.

Явления преломления и отражения

Под отражением понимают явление, при котором свет, распространяясь в прозрачном для него веществе, встречает на своем пути препятствие и резко изменяет свою траекторию. Препятствием может быть любое: жидкое или твердое тело, прозрачное и непрозрачное.

Явление отражения было известно с глубокой древности. Согласно историческим свидетельствам, законы отражения уже были сформулированы еще до нашей эры. А в первом веке нашей эры египетский философ Герон Александрийский высказал идею о траектории света, которую впоследствии использовал француз Пьер Ферма при формулировке своего принципа.

Явление преломления заключается в изломе прямой линии, по которой движется свет, при пересечении им поверхности, разделяющей два прозрачных материала. Заметим, что в случае отражения луч движется в одном прозрачном материале или, как принято говорить, в одной среде.

Первая формулировка законов преломления приписывается персидскому математику X века, некоему Ибну Сахлю, который в своих работах опирался на труды Клавдия Птолемея (I-II века н. э.). На рубеже конца XVI - начала XVII веков голландский ученый Снелл, обобщив результаты многих экспериментов со светом, сформулировал в математическом виде 2-й закон преломления, который в настоящее время носит его фамилию. Снелл свою формулировку привел в терминах расстояний, а не углов, как это принято сейчас. Современный вид закону преломления придал уже Рене Декарт.

Законы распространения света в прозрачных средах

Перед тем как переходить к рассмотрению принципа Ферма, законы преломления и отражения света следует сформулировать. Для каждого из этих явлений принято выделять по два закона. Ниже они попарно объединены:

  1. Траектория луча, когда он пересекает границу раздела двух сред, всегда лежит в одной плоскости с нормалью, проведенной к плоскости этой границы. Возможная траектория луча формируется в общем случае из трех частей: падающий луч, преломленный и отраженный.
  2. Если угол между падающим лучом света и нормалью назвать θ 1 , аналогичный угол, но уже для отраженного луча, записать как θ 2 , а преломленный - θ 3 , тогда 2-й закон будет иметь вид:

В этих формулах n 1 и n 2 - это показатели преломления в прозрачных средах 1 и 2. Показатель преломления, согласно определению, вычисляется так:

Здесь v и c - скорости движения луча света в среде и в вакууме.

Формулировка принципа Ферма

Пьер Ферма был одним из известных математиков и юристов Франции в первой половине XVII века. Принцип, который носит его фамилию, он сформулировал в 1662 году, то есть спустя полвека после открытия Снеллом своего закона для преломления.

Кратко принцип Ферма может быть сформулирован так: свет при движении в абсолютно любых прозрачных средах выбирает такую траекторию, которую он пройдет за наименьшее время.

По сути, эта формулировка ничем не отличается от той, что сделал Герон Александрийский полторы тысячи лет ранее для явления отражения. Тем не менее француз сделал ее общей для всех явлений, связанных со светом, и показал, как из этого принципа могут быть получены законы преломления и отражения.

Вывод 1-го закона отражения

Пользуясь принципом Ферма, законы отражения получим математически. Для этого рассмотрим рисунок ниже.

Здесь показано, что луч выходит с точки S, которая лежит на оси y. Затем он отражается от плоскости xz в некоторой неизвестной точке M. После отражения луч движется к точке P, лежащей на плоскости xy. Выбранное положение точек S и P не влияет на общность дальнейших рассуждений, а лишь упрощает математические выкладки.

Итак, запишем координаты каждой точки:

Координаты положения точек S и P известны. Задача состоит в том, чтобы найти такую точку M, которая будет соответствовать реальной траектории SMP, пройденной световым лучом. Также будем полагать, что рассматриваемое пространство является однородным, то есть скорость света в любой точке является постоянной величиной.

Согласно принципу Ферма, траекторию SMP свет пройдет за наименьшее время, если она будет наиболее короткой из всех возможных. Запишем ее длину:

SM = √(x 2 + y S 2 + z 2); MP = √((x-x P) 2 +y P 2 +z 2);

SMP = √(x 2 + y S 2 + z 2) + √((x-x P) 2 +y P 2 +z 2).

Чтобы вычислить минимальную длину SMP, необходимо найти частные производные по x и z (неизвестные координаты точки M) и приравнять к нулю полученные результаты.

Сначала найдем частную производную по z. Имеем:

∂(SMP)/∂z = z/√(x 2 + y S 2 + z 2) + z/√((x-x P) 2 +y P 2 +z 2) = 0.

Это равенство имеет единственный корень, когда z = 0. Иными словами, точка M лежит на оси x, то есть в той же плоскости, что и точки P и S (плоскость xy). Откуда следует, что восстановленная нормаль к плоскости xz, в которой, по условию задачи, находится точка M, будет лежать вместе с SM и MP в одной плоскости (xy). Это и есть 1-й закон отражения.

Вывод 2-го закона отражения

Продолжим производить вычисления предыдущего пункта. Как было сказано, теперь необходимо найти частную производную по x. Имеем:

∂(SMP)/∂x = x/√(x 2 + y S 2 + z 2) + (x-x P)/√((x-x P) 2 +y P 2 +z 2) = 0.

Последнее равенство запишем в виде:

x/SM + (x-x P)/MP = 0 =>

x/SM = (x P -x)/MP.

Полученные отношения в каждой части равенства - это синусы углов с вершиной в точках S и P. Если восстановить теперь нормаль к плоскости xz через точку M, то отмеченные углы будут соответствовать углам падения (между SM и нормалью) и отражения (между MP и нормалью).

Таким образом, следуя принципу Ферма, мы получили также 2-й закон отражения света.

Вывод закона преломления Снелла

Теперь покажем, как можно вывести из принципа Ферма закон преломления света. Для этого рассмотрим рисунок, похожий на предыдущий.

Для простоты будем рассматривать случай в плоскости xy. Выпишем координаты источника S и приемника P света, которые находятся в разных средах:

Найдем неизвестную координату точки M. Координата y=0 для нее точно известна, поскольку именно на границе сред (ось x) меняется скорость распространения света. Длины отрезков SM и MP равны:

SM = √(x-x S) 2 + y S 2);

MP = √(x P -x) 2 + y P 2).

Общее время, которое затратит свет на прохождение траектории SMP, будет равно:

Здесь v 1 , v 2 - скорости луча в соответствующих средах. Чтобы найти минимальное время движения, следует взять полную производную по переменной x и приравнять ее к нулю. Получаем:

dt/dx = (x-x S)/(√(x-x S) 2 + y S 2)*v 1) - (x P -x)/(√(x P -x) 2 + y P 2)*v 2) = 0 =>

(x-x S)/(SM*v 1) = (x P -x)/(MP*v 2).

Используя функции синусов угла падения θ 1 и преломления θ 3 , получаем:

sin(θ 1)/v 1 = sin(θ 3)/v 2 .

Чтобы привести полученное равенство к закону Снелла в удобном виде (через показатели преломления сред), необходимо помножить левую и правую части на скорость света c.

Таким образом, применение принципа Ферма позволяет легко вывести законы для основных явлений движения светового луча в прозрачных материалах.

Движение света в неоднородной среде

Рассмотренные выше случаи предполагают, что материал является гомогенным, и световой луч при движении в нем скорость свою сохраняет. В случае же негомогенных сред справедливо равенство:

Этот интеграл берется вдоль траектории следования света. Дифференциал dl - это отрезок пути, для которого среда сохраняет свою однородность. Величина n(x,y,z) - это локальный показатель преломления.

Отмеченный интеграл принято называть интегралом оптического пути. Принцип Ферма для оптического пути предполагает нахождение экстремумов для L.

Обобщенная формулировка рассматриваемого принципа

Принцип минимального времени для движения света является частным для более общей формулировки. В настоящее время обобщенный принцип Ферма формулируют так: свет выбирает во время движения такую траекторию, которая соответствует экстремумам оптического пути.

Экстремумами функции, согласно математическому определению, являются минимум, максимум и точка перегиба. Общий принцип Ферма удовлетворяет всем этим значениям, то есть траектория света не обязательно будет минимальной, она может быть и максимальной, и соответствующей точке перегиба оптического пути.

Бытовая аналогия с рассматриваемым принципом

Общий принцип Ферма, в свою очередь, является частным случаем так называемого принципа наименьшего действия. Здесь не будем приводить соответствующие определения и их математические формулировки, однако покажем, где можно применить предложенный французом принцип.

Используется он при решении простой, на первый взгляд, бытовой задачи: допустим, вблизи пляжа в море тонет человек. Как должен двигаться спасатель, находящийся на берегу, чтобы спасти утопающего? Конечно же, он должен прийти на помощь за наименьшее время. Поскольку скорость движения спасателя по пляжу больше, чем по воде, ему следует пробежать некоторое расстояние по берегу, а лишь затем прыгнуть в воду и поплыть. То есть задача сводится к применению принципа Ферма, где роль светового луча играет спасатель.

Отметим, что решение этой задачи не является простым, поскольку в его процессе появляются уравнения 4-й степени.

Таким образом, принцип Ферма - это инструмент получения основных законов распространения света. Однако он не является фундаментальным. Можно сказать, что он следует из принципа Гюйгенса об источниках вторичных сферических волн.



error: Контент защищен !!