Жизнь (живая природа). Реферат: Отличие живой природы от неживой Свойства тел живой природы

Природа – это все то, что нас окружает и радует глаз. С древних времен она становилась объектом исследований. Именно благодаря ей люди смогли постичь основные принципы мироздания, а также сделать для человечества немыслимое количество открытий. Сегодня условно природу можно разделить на живую и неживую со всеми присущими только данным типам элементами и особенностями.

Неживая природа – это своеобразный симбиоз простейших элементов, всевозможных веществ и энергий. Сюда можно отнести ресурсы, камни, природные явления, планеты и звезды. Неживая природа часто становится предметом для изучения со стороны химиков, физиков, геологов и других ученых.

Микроорганизмы способны выжить практически в любых условиях, где есть вода. Они присутствуют даже в твердых горных породах. Особенностью микроорганизмов является возможность быстрого и интенсивного размножения. Все микроорганизмы обладают горизонтальной передачей генов, то есть для того, чтобы распространить свое влияние, микроорганизму не обязательно передавать гены своим потомкам. Они могут развиваться с помощью растений, животных и прочих живых организмов. Именно этот фактор позволяет им выживать в любой среде. Некоторые микроорганизмы способны выжить даже в космосе.

Следует различать полезные микроорганизмы и вредные. Полезные способствуют развитию жизни на планете, в то время как вредные созданы для того, чтобы ее разрушать. Но в некоторых случаях вредные микроорганизмы могут стать и полезными. Например, при помощи некоторых вирусов лечат тяжелые заболевания.

Растительный мир

Растительный мир сегодня велик и многогранен. В наши дни существует множество природных парков, которые собирают у себя большое количество потрясающих растений. Без растений не может быть жизни на Земле, потому что благодаря им происходит выработка кислорода, который необходим для большинства живых организмов. Также растения поглощают углекислый газ, который наносит ущерб климату планеты и здоровью человека.

Растение – многоклеточные организмы. Сегодня без них нельзя представить ни одну экосистему. Растения служат не только элементом красоты на Земли, но они также очень полезны для человека. Помимо выработки свежего воздуха растения служат ценным источником пищи.

Условно растения можно разделить по пищевому признаку: которые можно употреблять в пищу и которые нельзя. К годным в пищу растениям можно отнести различные травы, орехи, фрукты, овощи, зерновые культуры, а также некоторые водоросли. К несъедобным растениям относят деревья, многие декоративные травы, кустарники. Одно и то же растение может содержать одновременно как съедобный элемент, так и несъедобный. Например, яблоня и яблоко, кустарник смородины и ягода смородины.

Животный мир

Животный мир удивительный и разнообразный. Он представляет собой всю фауну нашей планеты. Особенностями животных является возможности двигаться, дышать, питаться, размножаться. В процессе существования нашей планеты многие животные исчезли, многие эволюционировали, а некоторые просто появились. Сегодня животных разделяют по разным классификациям. В зависимости от места обитания и способа выживания они бывают водоплавающими или земноводными, плотоядными или травоядными и т.д. Также животных классифицируют в зависимости от степени приручения: дикие и домашние.

Дикие животные отличаются своим вольным поведением. Среди них выделяют, как травоядных, так и хищников, которые питаются мясом. В разных точках планеты обитают самые разнообразные виды животных. Все они стараются приспособиться к месту, в котором они обитают. Если это ледники и высокие горы, то раскраска животных будет светлой. В пустыне и степи превалирует больше цвет охра. Каждое животное старается выжить любыми способами, и изменение цвета их шерсти или перьев является главным тому доказательством адаптации.

Домашние животные тоже когда-то были дикими. Но их приручил человек для своих нужд. Он стал разводить свиней, коров и овец. В качестве защиты стал использовать собак. Для развлечения приручил кошек, попугаев и другую живность. Важность домашних животных в жизни человека очень высока, если он не является вегетарианцем. От животных он получает мясо, молоко, яйца, шерсть для одежды.

Живая и неживая природа в искусстве

Человек всегда уважал и ценил природу. Он понимает, что его существование возможно лишь в гармонии с ней. Поэтому существует множество творений великих художников, музыкантов и поэтов о природе. Некоторые художники в зависимости от приверженности к тому или иному элементу природы создавали свои течения в искусстве. Появились такие направления как пейзаж и натюрморт. Великий итальянский композитор Вивальди посвятил природе много своих произведений. Одним из выдающихся его концертов является «Времена года».

Природа очень важна для человека. Чем больше он заботиться о ней – тем больше получает в замен. Необходимо любить и уважать ее, и тогда жизнь на планете будет куда лучше!

Все, что мы видим вокруг нас, все, что нас окружает и при этом не создано руками человека - это живая и неживая природа. Она отличается большим разнообразием явлений и процессов. Узнаем, каковы особенности природы, и чем живая природа отличается от неживой.

Живая природа

Все объекты живой природы обладают важными качествами: они рождаются, растут, питаются, дышат, передвигаются, умирают. Для жизни им необходима пища, тепло, вода, воздух. К живой природе относится не только человек, но также животные, растения и даже микроорганизмы. Исследованием объектов живой природы занимается очень обширная и важная наука - биология.

  • Микроорганизмы

Задолго до того, как на нашей планете появились животные, ее уже населяли крошечные, незаметные глазу организмы: бактерии, грибы, вирусы. Они могут существовать практически в любых условиях, где есть хотя бы немного воды. Главная особенность всех микроорганизмов - способность очень быстро размножаться.

Рис. 1. Бактерии

  • Растения

Мир растений очень большой и разнообразный. Без них на Земле не было бы жизни, ведь растения вырабатывают самый важный для дыхания газ - кислород. Также они поглощают вредный углекислый газ, который очень плохо влияет на здоровье человека и климат планеты.

Растения - это важный источник пищи для человека и животных. Но нужно быть очень внимательным, так растения бывают съедобные (фрукты, орехи, злаки, овощи) и несъедобные (цветы, декоративные кустарники травы).

ТОП-4 статьи которые читают вместе с этой

  • Животные

К животным относятся все звери, птицы, земноводные, насекомые нашей планеты. За всю историю Земли какие-то животные исчезали, какие-то очень сильно менялись.

Много лет назад хозяевами нашей планеты были динозавры - огромные ящеры, которые не знали себе равных. Но из-за резкого изменения климата почти все они вымерли, и только немногие представители древних животных смогли приспособиться к новым условиям обитания.

Животные могут быть хищными и травоядными, домашними и дикими. Они приспосабливаются к тем условиям, где живут, и животных можно отыскать в любой точке земного шара, от знойных пустынь до ледяной Арктики.

Рис. 2. Белый медведь

  • Человек

Конечно же, к объектам живой природы относится и человек. Благодаря своему интеллекту, находчивости и разумному планированию своей деятельности ему удалось покорить себе всю планету. Но, точно так же, как животные, растения и микроорганизмы, он не может прожить без пищи, воздуха, воды.

Неживая природа

К объектам неживой природы относят воздух, воду, почву, минералы. Они были первыми при создании нашей планеты, и именно потому объекты неживой природы часто называют первичными.

Они могут находиться в трех состояниях:

  • твердое (камни, горы, песок, лед);
  • жидкое (вода, облако, туман, нефть);
  • газообразное (пар, воздух).

С объектами неживой природы не происходят никакие изменения в течение многих десятков и сотен лет. Они не дышат, не размножаются и не питаются. Их размер может увеличиться или уменьшиться, они могут передвигаться в пространстве, но только под влиянием внешних факторов. Поскольку они не рождаются, то никогда и не умирают.

Некоторые объекты неживой природы могут менять свое состояние. К примеру, вода может быть твердой в виде льда, привычной всем жидкой и газообразной в виде пара. Но она никуда не исчезает и не появляется из ниоткуда.

Таблица “Признаки живой и неживой природы”

Связь живой и неживой природы

Рассмотрев примеры живой и неживой природы, можно сделать вывод, что на нашей планете все взаимосвязано, и все находится в гармонии друг с другом. Живые существа не могли бы существовать без объектов неживой природы. А если бы не было растений и животных, Земля выглядела бы как безжизненная пустыня.

Рис. 3. Схема взаимосвязи живой и неживой природы

Что мы узнали?

При изучении одной из интересных тем по программе окружающего мира 1-2 класса, мы выяснили, что относится к живой и неживой природе. Доступный план конспекта помог определить основные отличия между объектами живой и неживой природы, их тесную взаимосвязь друг с другом.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 306.

Изучая универсальные закономерности эволюции и самоорганизации сложных систем, синергетика открывает глубинный изоморфизм живого и косного, общность образцов эволюции и структурных образований в царствах живой и «мёртвой» природы Она выносит на обсуждение целый ряд неожиданных вопросов: Какие структуры «выживают» на «теле» природы? Почему и структуры косной природы следуют некоторым «ритмам жизни»? Эволюционируют ли атомы? Существует ли память в «неживой» природе? Как происходит сборка сложной структуры? Обо всём этом - в статье Елены Николаевны КНЯЗЕВОЙ и Сергея Павловича КУРДЮМОВА.

Синергетика об аналогах живого в «неживой» природе

Что «предпочитает» природа? Спектры эволюционных форм

Похоже, что природе доставляет удовольствие варьировать один и тот же механизм бесконечно различными способами. Д.Дидро

Принято думать, что природа бесконечно разнообразна, что она ничем не ограничена в варьировании своих эволюционных механизмов и форм организации. Но синергетика демонстрирует обманчивость подобного взгляда.

Прежде всего, появляется парадоксальное представление о том, что в открытой среде (с источниками и стоками энергии), с диссипацией энергии, могут возникать и устойчиво самоподдерживаться локализованные процессы — диссипативные структуры . В сплошной среде может возникать локализация — очаги более интенсивных процессов, например, структуры горения . Кроме того, не какие угодно структуры могут реализоваться в данной среде.

Для некоторых классов открытых нелинейных сред (систем) установлено, что в них потенциально заключены целые спектры структур (спектры эволюционных форм организации), которые могут возникнуть лишь на развитых, асимптотических, стадиях процессов. Это — одна из фундаментальных задач, которая называется в синергетике задачей о поиске собственных функций нелинейной среды , то есть устойчивых способов организации процессов в среде, которые ей адекватны и к которым эволюционируют со временем все другие её состояния. Сколько и какие относительно устойчивые структуры могут самоподдерживаться в качестве метастабильно устойчивых в данной природной системе — определяется сугубо внутренними её свойствами.

Поиск спектров эволюционных форм природы — это, по существу, сверхзадача, близкая к так называемой задаче Гейзенберга в ядерной физике, когда требуется написать нелинейные уравнения некой среды, которая как самоорганизующаяся давала бы устойчивые состояния в виде спектра элементарных частиц.

До сих пор, например, непонятно, почему количество химических элементов (типов атомов) ограничено. Почему атомов порядка сотни, а не, скажем, существенно больше или меньше? Почему существует дискретный набор зарядов ядер атомов, или спектр типов атомов? Почему заряды целочисленны? Эти вопросы затрагивают глубинную физическую, квантово-механическую основу описания химических свойств и реакций.

Есть основания поставить задачу получения спектра атомов как структур самоорганизации некой открытой нелинейной среды, наподобие спектра форм, масс, зарядов. Уже показано, в частности, что существует глубокая аналогия между собственными функциями горения нелинейной среды на квазистационарной стадии и собственными функциями стационарной задачи Шрёдингера в центральном поле сил с кулоновским потенциалом . (В названной работе осуществлён вывод линейного стационарного уравнения Шрёдингера с кулоновским потенциалом из более общего квазилинейного уравнения теплопроводности с нелинейным источником; кроме того, найдены условия нормировки и непрерывности функции.) За этим результатом стоит целая серия естественных следствий, и, прежде всего, попытка построить модель атома как структуру горения некой среды и предложить другое понимание причин квантования, связанное с особой устойчивостью инвариантно-групповых решений, выступающих в качестве аттракторов-целей развития.

Ограниченное количество собственных функций квазилинейного уравнения теплопроводности с источником является математическим аналогом конечного числа собственных структур нелинейной среды, а исходя из данной аналогии, — счётного количества типов атомов, химических элементов. При таком подходе квантование должно стать следствием решения классической, но нелинейной задачи. Весь спектр атомов, как он представлен в периодической системе Д.И.Менделеева, должен быть получен в виде спектра собственных функций среды, определяемой соответствующими нелинейными дифференциальными уравнениями.

Вообще дискретность возможных структур организации — это то общее, что связывает мир живого и «неживого», хотя это, возможно, и не очевидно. Системы живого открыты и в высокой степени нелинейны, поэтому их ответ на внешнее воздействие может быть многократно сильнее (или слабее) его величины и качественно различным в разных ситуациях. Нелинейность накладывает определённые рамки на типы структур живого. Не всё, что угодно, возможно в качестве метастабильно устойчивого в нелинейном мире. Нелинейность квантует, делает дискретными возможные наборы движений, поз, жестов живых существ .

«Архитектура» живого связана, прежде всего, с движением и развитием живого. Она есть гармоничное сочетание, расположение частей в метастабильное эволюционное целое. Хотя имеется множество типов структур и конфигураций, «архитектура» живого отнюдь не произвольна. Известны, например, базисные виды поступательных движений лошади — аллюры: шаг, галоп, рысь, иноходь. Лошадь идёт не как угодно, а «использует» всякий раз один из своих базисных типов передвижений. В каждом таком типе движения лошади согласованы определённым образом, и переход от одного типа перемещения к другому осуществляется скачком .

Итак, природа имеет внутренние предпочтения к некоторым формам живого и косного. Лишь определённые наборы форм осуществимы в природных средах. А на другие формы наложен эволюционный запрет: они неустойчивы и очень быстро эволюционируют к устойчивым формам организации, «сваливаются» на них.

Структуры-аттракторы как непроявленное

Природа любит скрываться.

Гераклит

Относительно устойчивые структуры, на которые неизбежно выходят процессы эволюции в открытых и нелинейных системах, напомним, называются аттракторами. Поскольку под аттракторами здесь понимаются реальные структуры, а не их изображения в фазовом пространстве (пространстве физических параметров), постольку употребляется словосочетание: структуры-аттракторы .

Простейшие математические модели нелинейных открытых сред свидетельствуют, что таковая система таит в себе определённые формы организации . Структуры-аттракторы потенциально заложены в среде, задаются сугубо её собственными нелинейными свойствами. Они есть НЕПРОЯВЛЕННОЕ — «дух становления» системы. Они закладывают тенденции процессов в ней.

Потаённость, потенциальность, оборотная сторона бытия присуща и миру человеческому, и миру «неживой» природы. И в среде плазмы, и в живом веществе, и на поле человеческого сознания, и в теле культуры, и в среде научного сообщества есть свои внутренние тенденции, стремления — «предпочтения». И нет смысла им противиться. Всё равно они, подобно сильному речному течению, заставят двигаться в нужном направлении: в поле притяжения одного образца- аттрактора — именно к нему, а в поле притяжения другого образца-аттрактора — к иному. В этом смысле идеи Платона, Аристотеля и мудрецов древнего Китая звучат чрезвычайно конструктивно.

Сплошная открытая и нелинейная среда, наряду с несовершенными проявленными формами. содержит потенциальное бытие, идеальные структуры. Она «наполнена» ещё не состоявшимися формами. Каждая из этих структур-аттракторов соответствует собственной тенденции среды, имеет шанс реализоваться. На упрощённых математических моделях можно видеть всё поле возможных путей эволюции, все «Дао» среды.

С выбором траектории развития, с выходом на одну из структур-аттракторов, все другие эволюционные пути как бы закрываются. А поскольку в ходе развития может изменяться и сама среда, её внутренние свойства, то способно трансформироваться, несколько перестраиваться всё поле допустимых изменений, а некоторые структуры-аттракторы, некоторые цели могут и не осуществиться.

Достаточно серьёзным является утверждение, что открытые сложные системы имеют множество путей эволюции. Отсюда всё разнообразие форм, особенно в нелинейном мире. Поставленные в определённые условия, мы всякий раз реализуем одну из возможных форм организации, единственную из всех потенциальных структур. Выход на структуру-аттрактор определяется некими принципами наиболее устойчивого развития процесса, причём именно устойчивого развития, а не стационарного состояния.

«Ритмы жизни» природы

Мудрость нам единая дана:

Всему живому идти путём зерна.

В.Ф.Ходасевич

Никто не будет спорить с тем, что всё живое подвержено ритмам жизни. Диалектика жизни, циклической смены состояний — подъёма и спада активности, бодрствования и сна, жизни и смерти — символически представлена в восточном образе инь-ян. Пик расцвета содержит в себе «червоточину» падения, ночь начинается в полдень, когда ян слабеет и в нём начинает разрастаться «зерно» инь. Как говорится в одной из даосских притч, «в жизни существует зарождение, в смерти существует возвращение, начала и концы друг другу противоположны, но не имеют начала, и [когда] им придёт конец, — неведомо» .

Зерно, инь , — это сплошная потенциальность, таящая в себе устремлённость. А растение, ян, — это уже ставшее, актуализированное. Инь символизирует неопределённость и неоднозначность, блуждание в эволюционном лабиринте, а ян — реализацию цели и построение целого, некую завершённость. Синергетика убедительно демонстрирует нам, что в самом фундаменте природы, как живой, так и косной, заложен принцип инь-ян , наблюдаются процессы развёртывания и свёртывания, эволюции и инволюции, роста и вымирания.

Широко распространённые в природе нелинейные положительные обратные связи (когда следствие «подстёгивает» действие причины. — Ред .) обусловливают развитие структур в режиме с обострением , а это свидетельствует о том, что «время жизни» структур ограничено. Под режимами с обострением понимаются сверхбыстрые процессы, когда характерные величины (температура, энергия, концентрация, денежный капитал и т.д.) неограниченно возрастают за конечное время, называемое временем обострения . Если фактор, создающий неоднородности в среде (действие нелинейных объёмных источников), работает сильнее, чем рассеивающий (диссипативный) фактор, то возникают локализованные процессы и волны горения, сходящиеся внутри области локализации. Процесс развивается всё более интенсивно в сужающейся области вблизи максимума. Это — так называемый LS-режим с обострением, сопровождающийся концентрацией (ям), но чреватый десинхронизацией внутри системы.

Поэтому возникшая в LS-режиме сложная локализованная структура лишь относительно устойчива. Вблизи момента обострения она становится неустойчивой, чувствительной к малым возмущениям и распадается (это уже действие инь. — Ред. ). Наличие момента обострения, то есть конечность времени существования сложной структуры, само по себе поразительно. Чтобы возникла структура, необходим LS-режим, а последний приводит к неустойчивости. Получается, что сложная структура существует только потому, что она существует конечное время! Жить конечное время, чтобы вообще жить! Или иначе: лишь смертное способно к самоорганизации («Препятствиями растём!» — Ред. ). Хотите получить локализацию, сложную структуру — значит её время реализации ограничено моментом обострения. Сам факт преодоления хаоса , удержания его в определённой форме предполагает конечность жизни сложной структуры .

И ещё один не менее важный результат: для широкого класса уравнений с сильно нелинейными источниками показано существование двух противоположных, взаимодополнительных режимов . Предполагается, что можно избежать процесса распада сложной структуры, развивающейся в LS-режиме роста (температуры) с обострением, если вовремя (за счёт флуктуаций — хаоса) происходит переключение на иной режим — HS-peжим; тогда снижается интенсивность (падает температура), и «неограниченно разбегаются волны», возобновляются процессы «по старым следам». Распад, хотя бы частичный, заменяется объединением, максимальное развитие неоднородностей — их замыванием, сглаживанием, растеканием, синхронизацией .

В результате вычислительных экспериментов получено и исследовано пока лишь переключение с HS- на LS-режим . Обратное переключение, с LS- на HS-режим, для сред с сильной нелинейностью можно рассматривать как гипотезу, как итог теоретического моделирования (на основе анализа фазовой плоскости, полученной методом осреднения).

Синергетика склоняет нас к выводу, что законы ритма , циклической смены состояний, универсальны . Для человека это — день и ночь, смена его бодрствования и сна. В природе это — лето и зима. В тепле биологические процессы ускоряются, а в холоде — замедляются. Такого рода пульсации характерны и для косной природы. Известны колебательные режимы в химических реакциях (в реакции Белоусова-Жаботинского — «химические часы»). Согласно одной из космологических гипотез, если средняя плотность вещества во Вселенной больше некоторой критической, то сегодняшняя стадия расширения наблюдаемой Вселенной, «разбегания всего от всего», должна смениться стадией сжатия, «схлопывания к центру» . Развиваются представления о пульсационном развитии Земли и синхронной с ним эволюции биологической жизни на планете: планета то расширяется, то сжимается — будто дышит.

Переключение HS и LS-режимов является математическим эквивалентом процессов типа инь-ян. LS-режим — это обострение, ускорение процессов, стягивание к некоему центру и проявление потенциального; HS-режим — это, наоборот, замедление процессов и разлёт, «возобновление старых следов», погружение в прошлое, обращение к царству непроявленного.

Стареют ли атомы?

Снова будут небеса,

Не такие же, как наши...

Ф.Сологуб

В квантовой механике утверждается неразличимость, тождественность всех элементарных частиц одного сорта, а равным образом — и атомов. Предполагается, что все микрообъекты конкретного типа одинаковы, поэтому нельзя отличить, скажем, один фотон от другого или один атом водорода от другого атома водорода.

Синергетический взгляд на мир - взгляд эволюционный . Эволюция имеет сквозной характер. Она пронизывает все уровни организации косного и живого. Считается, что нынешняя эра эволюции Вселенной связана с разлётом галактик. С эволюционной точки зрения можно попытаться рассмотреть и такой объект, как атом. Тогда и на атомном уровне организации мира просматриваются аналоги жизни и даже истории.

Как уже упоминалось, можно подойти к пониманию квантово-механической реальности, решая классическую задачу, квазилинейное уравнение теплопроводности с нелинейным источником. И в этом случае возможна модель атома как структуры горения нелинейной среды. Разумеется, такова лишь постановка для дальнейшего исследования.

Стабильный, с неизменными уровнями атом, каким он считается в стационарной задаче Шрёдингера в квантовой механике, соответствует подобного рода модели — развитию процессов в режимах с обострением, но, вероятно, только на квазистационарной стадии. (Режимы с обострением, наряду со стадией сверхбыстрого нарастания процессов, имеют и длительную начальную квазистационарную стадию.)

Итак, модель водородоподобного атома описывается уравнением теплопроводности с распределённой плотностью и источником, причём некие неоднородности температуры соответствуют устойчивым состояниям (уровням) атома. В данной задаче имеются — горение, теплопроводность (рассасывающий неоднородности фактор) и заданное распределение плотности. На квазистационарной стадии распределение температуры практически не меняется. Поэтому можно полагать, что мы имеем дело с уровнями, «замершими» на определённых расстояниях от центра.

Но если мы начинаем рассматривать большие промежутки времени, выходить за пределы квазистационарной стадии, то обнаруживаем, что «волны горения» сходятся, сбегаются к центру, к аналогу ядра атома. «Жизни» атома соответствует LS-режим с обострением, режим «сбегающейся волны», когда интенсивность процесса увеличивается во всё более узкой области вокруг центра. Взгляд на атом как на локализованный квазистационарный процесс в среде, имеющий сложную структуру, по-видимому, плодотворен, ибо он позволяет объяснить некоторые факты, к примеру, эффект «красного смещения» спектральных линий у далёких галактик.

До сих пор предполагается, что ряд различных факторов может порождать феномен красного смещения. Во-первых, согласно привычному, наиболее распространённому толкованию, этот феномен может быть обусловлен разлётом галактик па нынешней стадии эволюции Вселенной, сопровождающимся эффектом Доплера. Во-вторых, некоторые учёные придерживаются той версии, что за эффект «покраснения квантов» ответственно временное изменение квантов излучения — «старение» квантов. В-третьих, в рассматриваемой нами модели этот эффект может быть вызван «старением» самих атомов. Здесь всё построено на эволюции во времени, в том числе, и атом может представлять собой меняющуюся во времени организацию.

Свет от галактик, которые находятся на значительных расстояниях от Земли, доходит до нас за огромные промежутки времени. Мы видим эти галактики такими, какими они были многие миллионы лет назад. Это далёкое прошлое, свидетельства о котором к нам попадают со всё более значительных расстояний, соответствует, с нашей точки зрения, ранним стадиям эволюции атомов. Уровни же тех атомов должны были находиться дальше от центра, а затем они медленно приближаются к ядру. Так что по мере ухода в прошлое мы наблюдаем атомы, энергетические уровни которых расположены всё дальше от ядра. А это как раз эквивалентно эффекту красного смещения. И в принципе можно оценить его константу, исходя из тех констант нелинейной среды, которые мы получили, моделируя атом как сходящиеся волны горения в LS-режиме.

Рост и расширение масштабов Вселенной может означать, что на макроуровне, в отличие от микроуровня, имеет место HS-режим растяжения всех масштабов, даже если галактики не имеют никакой механической скорости — просто из-за «разбухания самого пространства», из-за HS- режима охлаждения. Для наблюдателя же картина выглядит так, будто галактики разлетаются с большой скоростью.

Попытки построить модель атома как некой эволюционирующей структуры, имеющей свою историю, представляют огромный интерес. Если удастся последовательно развить такую модель, то станет возможным допускать, что и в микромире разворачиваются эволюционные процессы, но изменения ощутимы лишь за гигантские промежутки времени.

Имеет ли «неживое» память?

Но твой, природа, мир о днях былых молчит

С улыбкою двусмысленной и тайной.

Ф.И.Тютчев

Некоторые любопытные явления нелинейного мира указывают на элементы «памяти» в том числе и в процессах косной природы.

Во-первых , это — возобновление старых следов в HS-режиме . Выше говорилось о том, что в средах с достаточно сильной нелинейностью, вероятно, может происходить самопроизвольное переключение LS- и HS-режимов. Режим нарастания интенсивности процесса и сбегания к центру (LS- режим) сменяется режимом охлаждения и растекания (HS-режимом), процессы типа ян сменяются процессами типа инь. В HS-режиме происходит расплывание процесса преимущественно «по старым следам» , так как теплопроводность таких участков, из-за нелинейности коэффициента теплопроводности, существенно выше, чем «холодных» областей остальной среды.

Но всё-таки расплывание, хотя и слабо, осуществляется и в холодную среду, то есть структура всё более симметризуется, её форма вырождается из сложной в простую. Поэтому, хотя замыкание циклов взаимного переключения противоположно направленных режимов намного продлевает «жизнь» структуры с сильной нелинейностью, однако, оно не может сделать её бессмертной. Накопление элементов «памяти» приводит к «старению» и, в конце концов, к «смерти» сложных структур, несмотря на их ритмический образ жизни типа инь-ян .

В процессах эволюции сложных структур прошлое не исчезает. Оно остаётся существовать в ином, более медленном, или менее интенсивном темпомире, «тонком». Интенсивные процессы у центра в LS-режиме — это быстрый темпомир. А следы растекания и угасания в HS-режиме, остающиеся на периферии сложной структуры, — это медленный темпомир. Возврат к прежним медленным процессам в рассматриваемой модели мира представляет собой, в некотором смысле, аналог подсознания и ещё более глубокой видовой памяти. Вообще говоря, ничто не исчезает, но всё продолжает гореть в ином, медленном и мало ощутимом для нас темпомире («субъективном». — Ред.). Аналогично, подсознание человека является хранилищем всего того, что человек когда-либо видел, слышал, делал и знал.

Может быть, и не стоит этому слишком удивляться. Ведь в физике давно известны такие процессы, когда поведение системы зависит не только от величины внешнего воздействия на неё и собственных флуктуации сейчас, но и от характера процессов, протекавших в ней в предшествующие моменты времени. Это, например, гистерезис — остаточная намагниченность, остаточные деформации и т.п. Тем самым, история системы влияет на её поведение в настоящем.

Во-вторых , память — это информация о прошлом, содержащаяся в сложной эволюционной структуре. Определённые фрагменты (пространственные области) синхронического среза структуры являются индикатором в целом её прошлого развития, а другие фрагменты — будущего. Например, если структура развивается с обострением в схлопывающемся к центру режиме (LS-режиме), то наличный ход процессов в центре свидетельствует о характере прошлого развития всей структуры , а ход процессов на периферии сейчас — о характере её будущего развития .

В-третьих , память — это строительство по образцу , размножение по матрице, имеющее место в эволюционных процессах. Элементы памяти играют роль катализатора, позволяют существенно ускорить эволюцию, не повторять длительный исторический путь блужданий и случайного отбора. Кроме того, через память сложные структуры объединяются, связываются в единое целое. Это — эволюционный клей, если можно так выразиться. Наконец, существует тонкое взаимодействие, когда структуры могут быть соединены через слабые следы («хвосты») медленных, казалось бы, совершенно исчезнувших процессов, через «просачивание» процессов за пределы области их эффективной локализации. При топологически правильном объединении происходит выход в другой темпомир, ускорение развития возникшей структуры.

«Природа знать не знает о былом», — говорил нам Ф.И.Тютчев. Синергетика заставляет нас усомниться в правильности этих слов. Наверное, природа всё-таки знает о былом. Проблема же состоит в том, чтобы научиться находить в эволюционных структурах информацию о её прежних состояниях и процессах.

Память... Может быть, это не только осознание прежнего опыта, но и сама информация о прошлом, разлитая по Вселенной. Представление о памяти объективизируется. Память — это не то, что помним мы, но то, что помнит нас. Память «неживого»... Разве это просто метафора?

«Когда Великое Дыхание совершает выдох, всё, пребывающее в узах форм, должно расширяться. В результате этого расширения, когда достигается последняя степень его сдерживания, эта форма — будь то солнце, планета или семя растения — должна взорваться, разбросав свои фрагменты. Каждый фрагмент, или меньший центр, уносится в пространство, и таким образом образуются новые планеты, новые звёзды, новая растительность и новые жизни».

(Учение Храма. Т. 1. М.. МЦР, 2001. С. 320)

Два пути природы: путь отбора через хаос и путь резонансного возбуждения

И тайна жизни — два пути —

Ведут к единой цели оба.

И всё равно, куда идти.

Д.С.Мережковский

Длительный и многотрудный путь эволюции природы — это путь преодоления хаоса и возникновения структур, случайных вариаций, жестокой конкуренции и выживания сильнейших. Диссипативные процессы осуществляют «выедание». Затухание «ненужного», благодаря хаосу на микроуровне (вообще, на более низком уровне организации. — Ред.), лежит в основе выхода на структуры-аттракторы эволюции. Так протекала в течение нескольких миллиардов лет космическая и биологическая эволюция. Но является ли такой путь единственно возможным?

Живая природа научилась многократно сокращать время выхода на нужные структуры посредством составления генетических программ. Носитель наследственности ДНК становится некой матрицей, по которой строятся сложные белковые тела, биологические среды. Можно создавать сложное достаточно быстро, не повторяя весь чудовищно трудоёмкий и длительный путь эволюции природы. Она умеет в миллионы раз сокращать его — от простой клетки к сложнейшему организму. Ведь ни одна живая система в ходе своего онтогенеза не проходит снова весь филогенетический путь эволюции. В этом великая тайна морфогенеза!

Строительство по образцу, матричное дублирование, является некой формой резонансного возбуждения . Это механизм «штамповки» типа редупликации ДНК, действующий в открытых нелинейных системах.

Да, оба пути ведут к единым целям — к структурам-аттракторам эволюции. И в этом Д.С.Мережковский прав. Но не всё равно, куда идти, какой путь выбрать.

Отбор через хаос — это медленный путь случайных вариаций и эволюционного отбора, постепенного перехода от простых структур ко всё более сложным. Путь же резонансного возбуждения — это быстрый переход к сложному, многократное сокращение временных затрат и материальных усилий, инициирование желаемых и — что не менее важно — реализуемых на данной среде структур. Вместе с тем, это как бы и путь йоги, когда медитация способствует кратчайшему выходу на «структуру-аттрактор», и происходит кристаллизация духа, высшего знания, таланта.

Вся природа устроена так, что в ней действуют принципы экономии и рост скорости эволюции. Ускорение темпа процессов имеет место в режимах с обострением, которые характерны как для мира живой, так и «мёртвой» природы при наличии в последней «петель» нелинейной положительной обратной связи. Посредством резонансного возбуждения происходит сжатие процессов во времени.

Природа выработала в результате эволюции определённые механизмы, которые в простых нелинейных моделях преднамеренно воссоздаются через резонансные воздействия на открытую нелинейную среду. Надо правильно «укалывать» среду — производить малые воздействия на неё в нужное время и в нужном месте. Надо правильно пространственно распределять эти воздействия, ибо важна не сила (величина, длительность, всеохватность и т.п.), а его пространственная конфигурация, топология, в частности, пространственная симметрия. Если воздействовать на среду конфигурационно согласованно с её собственными структурами, то она будет развёртывать перед нами скрытые в ней разнообразные формы. Произойдёт самоорганизация, раскрытие сокровенного, реализация потенциального.

И пусть не пугают нас филистёры призраком китайского или нашего российского Великого скачка. Природа делает эти скачки, осуществляет это колоссальное сжатие времени постоянно, во всех актах развития живого.

Ускорение процессов. Катализ

Мгновение бежит неудержимо...

Н.Гумилёв

И в «мёртвом» есть механизмы ускорения синтеза сложного.

Катализ является одним из наиболее интересных явлений, изучаемых в современной химии. Разрабатываются, в частности, модели процессов, протекающих на поверхности катализатора. На поверхность кристалла, то есть на какую-то определённую структуру решётки, случайным образом из среды, в которой происходит каталитическая реакция, попадают атомы и закрепляются на решётке в результате адсорбции или/и поверхностных реакций. Решётка играет роль матрицы, которая позволяет удерживать атомы на заданных расстояниях. Можно сказать, что на ней со временем, с некоторым запаздыванием осуществляются аналоги многочастичных столкновений, которые изучаются в синергетике .

Причиной сверхбыстрого развития процесса, протекающего на решётке, является резкий рост вероятности сложной реакции — аналога столкновения многих частиц. При каталитическом процессе происходит «размножение» продукта. Решётка, на которой идёт каталитическая реакция, является не просто ускорителем процесса, но и средством производства вещества необходимого типа.

Катализатор-матрица позволяет неслучайным образом суммировать случайно попавшие на неё частицы (например, атомы), то есть осуществлять сложные коллективные взаимодействия. Ускорение процессов имеет место благодаря определённой пространственной организации каталитической поверхности, конкретному расположению, диспозиции атомов решётки. Здесь просматривается глубокая связь с представлениями о резонансном возбуждении в синергетике. Правильная топология воздействия на среду равносильна возбуждению в ней собственной структуры, правильному объединению атомов в сложную молекулу. Так, формой резонансного возбуждения в биологии является редупликация ДНК, строительство по образцу, что позволяет существенно ускорять биологические процессы.

Почему природа столь экономна?

Природа подобна рачительному хозяину, который бережлив там, где нужно, для того чтобы иметь возможность быть щедрым в своё время и в своём месте. Она щедра в своих действиях и бережлива в применяемых ею причинах.

Г.Лейбниц

Во многих случаях в химии просто необъяснимо, почему молекула имеет именно такую стереометрию объединения, а не какую-то другую. Часто это рассматривается просто как экспериментальный факт. Возможный, едва ли не единственный, способ объяснения химических связей и химических структур — это объяснение на основании вариационных принципов. Показывается, что определённые конфигурации объединения атомов означают наиболее устойчивые состояния, ибо соответствуют (способствуют) минимизации энергии или свободной энергии.

Нелинейный анализ и синергетика позволяют принципиально по-другому подойти к поиску наиболее устойчивых состояний и структур природы. Такой поиск можно вести, исходя вовсе не из вариационных принципов минимизации функционалов (энергии, действия и т.п.). Более того, неплохо было бы понять, откуда берутся сами вариационные, или экстремальные, принципы.

В синергетике исследуются механизмы самоорганизации природы, иначе говоря то, как происходит выход на наиболее устойчивые состояния.

Во-первых, показывается, что таких состояний для всякой более или менее сложной системы может быть много. Решение нелинейной задачи приводит к своего рода квантовому эффекту, к выделенности некоторых состояний, к дискретности путей эволюции. Известны, например, два типа «застройки» среды при конвективной неустойчивости. Это — классические, хорошо известные шестигранные «ячейки Бенара», образующие структуру типа «пчелиных сот», или же менее устойчивые четырехгранные ячейки.

Во-вторых, раскрывается сам механизм «выпадения» па устойчивые состояния, на структуры-аттракторы эволюции. Это механизм «преодоления» хаоса, конкуренции двух начал — хаотического, рассеивающего, действующего через диссипативные процессы, и начала, наращивающего неоднородности в среде (благодаря нелинейным объёмным источникам). Их взаимное действие приводит к «выеданию», обусловливает как бы силу притяжения к аттрактору, отбор из будущего, в соответствии с идеальным образцом, с одной из структур-аттракторов.

Синергетика обнаруживает и иной выработанный природой способ экономии, сжатия процессов эволюции по времени. Это — резонансное возбуждение. Малое, но топологически правильно организованное воздействие, которое, как говорил Лейбниц, «в своё время и в своём месте», оказывается чрезвычайно эффективным. Ибо оно эквивалентно устойчивым состояниям самой природной среды, собственным формам её организации.

Можно сразу возбудить в среде одну из структур-аттракторов и притом ту, которая желательна. Можно выйти на аттрактор, минуя длительный путь эволюции к нему с неизбежным уничтожением всего того, что не соответствует его правильной организации. Писатель-фантаст Иван Ефремов сказал бы, что можно минимизировать зло — инферны. Да, устраняется лишнее выжигание среды и радикально сокращается время выхода на аттрактор, сжимается время эволюции. Но существует и опасность больших скачков. Значит надо знать законы правильного устройства аттракторов, адекватных данной среде, а не навязывать системе несвойственные ей формы организации.

Принципы экономии играют свою роль и при объединении структур. При правильном ходе такого процесса приближается момент обострения — во всей объединённой области устанавливается более высокий темп. Целое развивается быстрее составляющих его частей.

Инварианты вокруг нас

Послесловие от редакции

Идеи синергетики заимствованы из жизни многоликой Природы — как бы на первый взгляд они ни были отвлечённы. Ведь законы организации (строения и развития) неисчислимых природных систем универсальны, причём независимо от того — живые они либо косные. Мы имеем в виду, прежде всего, общий принцип гармонизации систем — друг с другом и их частей. Это принцип золотого отношения , прослеживаемый и по пространству, и во времени, то есть и для структур, и для процессов, — на любых масштабах от микро- до мегамира. Особенно ярко этот принцип явлен в биосфере, в человеке, закреплён в его психике, формируя, формализуя принцип КРАСОТЫ, отражающий закон ЦЕЛЕСООБРАЗНОСТИ. Именно благодаря общим правилам гармонии, обеспечивающим, пусть временную, устойчивость, равновесие в той или другой системе, внутри даже совсем непохожих друг на друга образований, устанавливается в целом, к примеру, утроение их характерных масштабов.

В Природе на всех её уровнях неукоснительно действует принип АНАЛОГИИ, столь почитаемый в древних доктринах, — закон подобия, изоморфизма. Он обеспечен её фрактальным , «голографическим» устройством, когда, как правило, в центре системы (в начале, в прошлом!) прослеживается спиральная структура («пружина потенции»), а на периферии (в конце, в будущем!) — ветвящаяся , турбулентная квазихаотичная организация, замыкающая систему, обеспечивая ей обмен с окружающим внешним миром («протянутая рука»).

И не удивительно, что имеется определённая глубинная связь между относительным расположением планетных уровней в Солнечной системе (значит и атомных!) и характерными этапами жизни человека. Так мы сами и всё вокруг своеобразно воплощает действие синергетического принципа резонансного возбуждения . А следовательно, пространство должна наполнять некая невидимая иноматериальная «тонкая» среда, в которой и происходит мгновенный Прим. ред .

Напрашиваются параллели с прекращением процесса перевоплощений, когда искуплены все «кармические долги» периодических пребываний на земном плане и для индивидуализированного самосознания наступает пора пребывания в мире «божественного сознания». - Прим. ред .

Значит то, что происходит в чёрной дыре (см. «Дельфис» № 4(28)/2001), если можно так выразиться, то есть в сингулярности, или за пределами наших нынешних физических представлений о пространстве, времени, гравитации и т.д., содержится как бы в ПРОШЛОМ? Например, «нутро», или ядро, галактик — это тоже их прошлое? Чёрные дыры — это как бы «окна назад», а гравитационный коллапс, приводящий к явлению чёрной дыры, способ возврата в это прошлое? - Прим. ред . ] Еленин Г.Г., Слинько М.Г . Математическое моделирование элементарных процессов на поверхности катализатора//Наука, технология, вычислительный эксперимент. М., Наука, 1993. С. 99.


Приложение 2
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
Глава №1 Процесс организации и самоорганизации в живой природе 4
1. Живая природа 4
1.1 Организация в живой природе 6
    1.2 Уровни организации живой природы
8
    1.3 Самоорганизации в живой природе
10
Заключение 13
Список литературы 14

Введение
Вопрос о живой природе является одним из давних вопросов в биологии, поскольку интерес к нему восходит еще к античным векам. Дававшиеся в разные времена определения живой природы не могли быть исчерпывающими из-за отсутствия достаточных данных. Лишь последующее развитие биологии привело к новому пониманию сущности живой пироды, определению свойств живого.
Наш мир, все, что доступно в нем наблюдению претерпевают непрерывные изменения - мы наблюдаем его непрекращающуюся эволюцию. Главной причиной эволюции Ламарк считал присущее живой природе изначальное (заложенное Творцом) стремление к усложнению и самосовершенствованию своей организации. Вторым фактором эволюции он называл влияние внешней среды.
Существует, к примеру, еще одна позиция. Согласно принципу Бора, существующим мы имеем право считать лишь то, что наблюдаемо или может быть сделано таковым. Следовательно, подобных сил не существует. Таким образом, все, что происходит вокруг нас, мы можем считать процессом самоорганизации, то есть процессом, идущим за счёт внутренних стимулов, не требующих вмешательства внешних факторов, не принадлежащих системе.
Мы видим два важных процесса, происходящих в живой природе – организация и самоорганизация. Несомненно, каждый из этих процессов вносит свою «лепту», имеет свое определенное значение в области живой природы.
Именно поэтому целью моей работы является подробное рассмотрение процессов организации и самоорганизации. Задачей своей работы я ставлю определение сущности данных процессов, а также выявление их различий и общих черт.

Глава № 1:Процесс организации и самоорганизации в живой природе
1.Живая природа
Природа - материальный мир Вселенной , в сущности - основной объект изучения науки. В быту слово «природа» часто употребляется в значении естественная среда обитания (всё, что не создано человеком). Весь материальный мир можно разделить на две составляющие – неживую и живую природу.
Неживая природа или косная материя представлена в виде вещества и поля , которые обладают энергией . Она организована в несколько уровней: элементарные частицы , атомы , химические элементы , небесные тела , звёзды , галактика и Вселенная . Вещество может пребывать в одном из нескольких агрегатных состояний (например: газ , жидкость , твёрдое тело , плазма ).Расположив объекты Вселенной по размерам Сухонос С.И. обнаружил периодичность. Развитие Неживой природы привело к появлению Живой природы.
Живая природа - совокупность организмов. Исследованием живой природы занимается биология (от греч. bios - жизнь и logos - учение, наука).
Интерес к познанию живой природы возник у человека очень давно, еще в первобытную эпоху, и был тесно связан с его важнейшими потребностями: в пище, лекарствах, одежде, жилье и т.п. Однако только в первых древних цивилизациях люди стали целенаправленно и систематически изучать живые организмы, составлять перечни животных и растений, населяющих разные регионы земли. 1
Делится на пять царств: вирусы, бактерии , грибы , растения и животные . Живая природа организуется в экосистемы , которые составляют биосферу . Основной атрибут живой материи - генетическая информация , проявляющаяся в репликации и мутации . Развитие живой природы привело к появлению человечества . Мир живой природы предстает перед нами подвижным, изменчивым и удивительно разнообразным.
Часто определение живого сводят к перечислению характерных свойств (или отличий от неживой материи):
сложная, упорядоченная структура;
активная реакция на внешние воздействия или раздражения;
в процессе развития не только изменяются, но и усложняются;
способность к размножению;
способность передачи наследственной информации от родителей к потомкам;
адаптируемость к окружающей среде;
получают энергию из внешней среды, используя ее на поддержание собственной упорядоченности. 2
Различают такие понятия, как среда и условия существования организмов, а точнее способность их к организации и самоорганизации в живой природе.
Рассмотрим поподробнее данные процессы.

1.1.Организация в живой природе
Под организацией системы понимается изменение ее структуры, обеспечивающее согласованное поведение, или функционирование системы, которое определяется внешними условиями.
На разную степень организации живой материи обращали внимание ученые разных времен. Еще в прошлом столетии немецкий ботаник М.Шлейден говорил о различном порядке организованности живых тел. К тому времени была создана клеточная теория живой материи. Немецкий биолог-эволюционист Э.Геккель считал протоплазму клетки неоднородной и состоящей из частиц, названных им пластидулами. По мнению английского философа Г.Спенсера (1820-1903), пластидулы не статичны, а находятся в состоянии постоянной функциональной активности, в связи с чем они были названы физиологический единицами. Таким образом, утверждалась идея дискретности, т.е. делимости живой материи на составные части более низкой организации, которым приписывались вполне определенные функции. 3
Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все «высшее» сводилось к «низшему»: процессы жизнедеятельности - к совокупности физико-химических реакций, а организация организма - к взаимодействию молекул, клеток, тканей, органов и т.п. Качественные особенности живых организмов отрицались. В то время один из представителей физиологического детерминизма, французский патофизиолог К.Бернар (1813-1878) считал, что все структуры и процессы в многоклеточном организме определяются внутренними причинами, природа которых пока не расшифрована.
Исторически сложилось так, что понятие «структурные уровни» ввели не биологи, а философы. Концепция структурных уровней впервые была предложена в 20-х годах XX века. В соответствии с данной концепцией структурные уровни различаются не только по классам сложности, но и по закономерностям функционирования. Кроме того, концепция включает иерархию структурных уровней, в которой каждый последующий уровень входит в предыдущий, образуя таким образом единое целое, где низший уровень содержится в самом высоком. Таким образом, понятие уровней организации сливается с органической целостностью.
Концепция структурных уровней получила дальнейшее развитие. Она наиболее полно отражает объективную реальность, сложившуюся в ходе исторического развития живой природы.

1.2.Уровни организации живой природы
Живая природа обладает сложной структурой. В ней выделяют следующие уровни: молекулярный, клеточный, организменный, популяционно-видовой, биоценотический и биосферный.
Молекулярный – наиболее древний уровень структуры живой природы, граничащий с неживой природой. На данном уровне изучается химический состав и строение молекул сложных органических веществ, входящих в состав клетки (белков, нуклеиновых кислот и др.), а также выявляется роль нуклеиновых кислот в хранении наследственной информации, белков - в образовании клеточных структур, в процессах жизнедеятельности клетки.
Клеточный уровень жизни, включающий в себя молекулярный. Рассматривает сложное строение клетки, наличие в ней оболочки, плазматической мембраны, ядра, цитоплазмы и других органоидов; присущие ей разнообразные процессы жизнедеятельности: рост, развитие, деление, обмен веществ, а также сходное строение и жизнедеятельность клеток организмов растений, животных, грибов и бактерий. 4
Организменный уровень, включающий в себя молекулярный и клеточный. Изучает сходство организмов разных царств живой природы - их клеточное строение, сходное строение клеток и протекающих в них процессов жизнедеятельности и выявляет различия между растениями и животными в строении и способах питания, а также рассматривает связь организмов со средой обитания, их приспособленность к ней.
Популяционно-видовой - надорганизменный уровень жизни, включающий в себя организменный уровень. В его внимании находятся пищевые, территориальные и родственные связи между особями вида, связь их с факторами неживой природы, плюс к этому приуроченность экологических закономерностей и эволюционных процессов к этому уровню.
Биоценотический уровень жизни, представляющий собой сообщество особей разных видов на определенной территории, связанных различными внутривидовыми и межвидовыми взаимоотношениями, а также факторами неживой природы. Проявление на этом уровне экологических закономерностей и эволюционных процессов.
Биосферный - высший уровень организации жизни. Биосфера - биологическая оболочка Земли, совокупность всего живого населения. Круговорот веществ и превращение энергии в биосфере - основа ее целостности, роль живых организмов в нем. Роль солнечной энергии в круговороте веществ, значение растений и фотосинтеза в поглощении и использовании солнечной энергии для поддержания жизни всего многообразия видов на Земле, сохранения равновесия.

1.3.Самоорганизация в живой природе
Самоорганизация - это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы. Самоорганизация характеризуется возникновением внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Причем понятия функция и структура системы тесно взаимосвязаны; система организуется, т.е. изменяет структуру ради выполнения функции.
Вопрос о взаимоотн
и т.д.................

Хиральность - несовместимость объекта со своим зеркальным отражением любой комбинацией вращений и перемещений в трехмерном пространстве. Речь идет только об идеальном плоском зеркале. В нем правша превращается в левшу и наоборот.

Хиральность типична для растений и животных, и сам термин происходит от греч. χείρ - рука.

Есть правые и левые ракушки и даже правые и левые клювы у клестов (рис. 1).

«Зеркальность» распространена и в неживой природе (рис. 2).

Рис. 2. Фото с сайта scienceblogs.com («Троицкий вариант» №24(218), 06.12.2016)" border="0">

В последнее время стали модны «хиральные», т. е. зеркальные часы (обратите внимание на надпись на циферблате) (рис. 3).

И даже в лингвистике есть место хиральности! Это палиндромы: слова и предложения-перевертыши, например: Я УДАРЮ ДЯДЮ, ТЁТЮ РАДУЯ, Я УДАРЮ ТЁТЮ, ДЯДЮ РАДУЯ или ЛЕЕНСОН - УДАВ, НО ОН В АДУ НОС НЕ ЕЛ!

Очень важна хиральность для химиков и фармацевтов. Химия занимается объектами в наномасштабе (модное слово «нано» происходит от греч. νάννος - карлик). Хиральности в химии посвящена монография, на обложке которой (на фото справа ) - хиральные колонны и две хиральные молекулы гексагелицена (от helix - спираль).

А важность хиральности для медицины символизирует обложка июньского номера американского журнала Journal of Chemical Education за 1996 год (рис. 4). На боку добродушно виляющего хвостом пса изображена структурная формула пеницилламина. Пес смотрит в зеркало, а оттуда на него глядит страшный зверь с оскаленной клыкастой пастью, горящими огнем глазами и вставшей дыбом шерстью. На боку зверя изображена та же самая структурная формула в виде зеркального отображения первой. Название опубликованной в этом номере статьи о лекарственных хиральных средствах было не менее красноречивым: «Когда молекулы лекарств смотрятся в зеркало». Почему же «зеркальное отражение» так драматически изменяет облик молекулы? И как узнали, что две молекулы являются «зеркальными антиподами»?

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры о том, представляет ли свет собой волны или частицы. Ньютон полагал, что свет состоит из частиц с двумя полюсами - «северным» и «южным». Французский физик Этьен Луи Малюс, ввел понятие о поляризованном свете, с одним направлением «полюсов». Теория Малюса не подтвердилась, однако название осталось.

В 1816 году французский физик Огюстен Жан Френель высказал необычную для того времени идею о том, что световые волны - поперечные, как волны на поверхности воды.

Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландского шпата или турмалина, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Если второй такой же кристалл поставить перпендикулярно первому, поляризованный свет через него не пройдет.

Отличить обычный свет от поляризованного можно с помощью оптических приборов - поляриметров; ими пользуются, например, фотографы: поляризационные фильтры помогают избавиться от бликов на фотографии, которые возникают при отражении света от поверхности воды.

Оказалось, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году французский физик Франсуа Доминик Араго у кристаллов кварца. Это связано со строением кристалла. Природные кристаллы кварца асимметричны, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения (рис. 5). Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году французский физик Жан Батист Био и немецкий физик Томас Иоганн Зеебек выяснили, что некоторые органические вещества, например сахар и скипидар, также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состояниях. Оказалось, что каждый «цветовой луч» белого света поворачивается на разный угол. Сильнее всего поворачивается плоскость поляризации для фиолетовых лучей, меньше всего - для красных. Поэтому бесцветное вещество в поляризованном свете может стать окрашенным.

Как и в случае кристаллов, некоторые химические соединения могли существовать в виде как право-, так и левовращающих разновидностей. Однако оставалось неясным, с каким свойством молекул связано это явление: самый тщательный химический анализ не мог обнаружить между ними никаких различий! Такие разновидности веществ назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 году знаменитый шведский химик Йёнс Якоб Берцелиус: виноградная кислота С 4 Н 6 О 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Но никто не знал, существует ли не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

Открытие Пастера

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году никому тогда не известный французский ученый Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, работая под руководством вышеупомянутого Жана Батиста Био и видного французского химика-органика Жана Батиста Дюма. После окончания Высшей нормальной школы в Париже молодой (ему было всего 26 лет) Пастер работал лаборантом у Антуана Балара. Балар был уже известным химиком, который за 22 года до этого прославился открытием нового элемента - брома. Своему ассистенту он дал тему по кристаллографии, не предполагая, что это приведет к выдающемуся открытию.

В ходе исследования Пастер приготовил раствор натриево-аммониевой соли оптически неактивной виноградной кислоты и медленным выпариванием воды получил красивые призматические кристаллы этой соли. Кристаллы эти, в отличие от кристаллов виноградной кислоты, оказались асимметричными. У части кристалликов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга.

Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной (правая и левая поляризации взаимно компенсировались). Пастер на этом не остановился. Из каждого из двух растворов с помощью сильной серной кислоты он вытеснил более слабую органическую кислоту. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая оптически неактивна. Однако оказалось, что из одного раствора образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась тоже винная кислота, но вращающая влево! Эти кислоты получили название d -винной (от лат. dexter - правый) и l- винной (от лат. laevus - левый). В дальнейшем направление оптического вращения стали обозначать знаками (+) и (–), а абсолютную конфигурацию молекулы в пространстве - буквами R и S . Итак, неактивная виноградная кислота оказалась смесью равных количеств известной «правой» винной кислоты и ранее неизвестной «левой». Именно поэтому равная смесь их молекул в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название «рацемат», от лат. racemus - виноград. Два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. έναντίος - противоположный).

Поняв значение своего эксперимента, Пастер выбежал из лаборатории и, встретив лаборанта физического кабинета, бросился к нему и воскликнул: «Я только что сделал великое открытие!» Кстати, Пастеру очень повезло с веществом: в дальнейшем химики обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом.

Пастер открыл еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. Во время посещения Германии один из аптекарей дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер обнаружил, что бывшая когда-то неактивной кислота стала левовращающей. Оказалась, что зеленый плесневой грибок Penicillum glaucum «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на рацемат миндальной кислоты, только в данном случае она «поедает» левовращающий изомер, не трогая правовращающий.

Третий способ разделения рацематов был чисто химическим. Для него нужно было иметь оптически активное вещество, которое при взаимодействии с рацемической смесью по-разному связывалось бы к каждым из энантиомеров. В результате два вещества в смеси не будут антиподами (энантиомерами) и их можно будет разделить как два разных вещества. Это можно пояснить такой моделью на плоскости. Возьмем смесь двух антиподов - Я и R. Их химические свойства одинаковые. Внесем в смесь несимметричный (хиральный) компонент, например Z, который может реагировать с каким-либо участком в этих энантиомерах. Получим два вещества: ЯZ и ZR (или ЯZ и RZ). Эти структуры не являются зеркально симметричными, поэтому такие вещества будут чисто физически различаться (температурой плавления, растворимостью, еще чем-нибудь) и их можно разделить.

Пастер сделал еще много открытий, в числе которых прививки против сибирской язвы и бешенства, ввел методы асептики и антисептики.

Исследование Пастера, доказывающее возможность «расщепления» оптически неактивного соединения на антиподы - энантиомеры, первоначально вызвало у многих химиков недоверие, однако, как и последующие его работы, привлекло самое пристальное внимание ученых. Вскоре французский химик Жозеф Ашиль Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Немецкий химик Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось всё больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов.

Теория Вант-Гоффа

Такую теорию создал молодой голландский ученый Якоб Хендрик Вант-Гофф, который в 1901 году получил первую в истории Нобелевскую премию по химии. Согласно его теории, молекулы, как и кристаллы, могут быть хиральными - «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Это можно продемонстрировать на примере простейшей аминокислоты аланина. Две изображенные молекулы невозможно совместить в пространстве никакими поворотами (рис. 6, вверху).

Многие ученые отнеслись к теории Вант-Гоффа недоверчиво. А известный немецкий химик-органик, выдающийся экспериментатор, профессор Лейпцигского университета Адольф Кольбе разразился резкой до неприличия статьей в Journal für praktische Chemie с ехидным названием «Zeiche der Zeit» («Приметы времени»). Он сравнивал теорию Вант-Гоффа с «отбросами человеческого ума», с «кокоткой, наряженной в модные одежды и покрывшей лицо белилами и румянами, чтобы попасть в порядочное общество, в котором для нее нет места». Кольбе писал, что «некоему доктору Вант-Гоффу, занимающему должность в Утрехтском ветеринарном училище, очевидно, не по вкусу точные химические исследования. Он счел более приятным сесть на Пегаса (вероятно, взятого напрокат из ветеринарного училища) и поведать миру то, что узрел с химического Парнаса... Настоящих исследователей поражает, как почти неизвестные химики берутся так уверенно судить о высочайшей проблеме химии - вопросе о пространственном положении атомов, который, пожалуй, никогда не будет решен... Такой подход к научным вопросам недалек от веры в ведьм и духов. А таких химиков следовало бы исключить из рядов настоящих ученых и причислить к лагерю натурфилософов, совсем немногим отличающихся от спиритов ».

Со временем теория Вант-Гоффа получила полное признание. Каждый химик знает, что, если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах, при участии асимметричных агентов, например ферментов, образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахара́ только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействуют с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький.

Конечно, тут же возникает вопрос о том, как же появились на Земле первые оптически активные химические соединения, например та же природная правовращающая винная кислота, или как возникли «асимметричные» микроорганизмы, питающиеся только одним из энантиомеров. Ведь в отсутствие человека некому было осуществлять направленный синтез оптически активных веществ, некому было разделять кристаллы на правые и левые! Однако подобные вопросы оказались настолько сложными, что однозначного ответа на них нет и поныне. Ученые сходятся лишь в том, что существуют асимметричные неорганические или физические агенты (асимметричные катализаторы, поляризованный солнечный свет, поляризованное магнитное поле), которые могли дать начальный толчок асимметрическому синтезу органических веществ. Похожее явление мы наблюдаем и в случае асимметрии «вещество - антивещество», поскольку все космические тела состоят только из вещества, а отбор произошел на самых ранних стадиях образования Вселенной.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Человек - существо хиральное. И это относится не только к его внешнему виду. «Правые» и «левые» лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору как ключ к замку и запускает желаемую биохимическую реакцию. Действие же «неправильного» антипода можно уподобить попытке пожать правой рукой левую руку своего гостя. Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем - вызвать нежелательные побочные эффекты или даже быть токсичным. Это стало очевидным после нашумевшей трагической истории с талидомидом - лекарственным средством, которое назначали в 1960-е годы беременным женщинам как эффективное снотворное и успокаивающее. Однако со временем проявилось его побочное тератогенное (от греч. τέρας - чудовище) действие, и на свет появилась масса младенцев с врожденными уродствами. Лишь в конце 1980-х годов выяснилось, что причиной несчастий был только один из энантиомеров талидомида - правовращающий - и только левовращающий изомер является мощным транквилизатором (рис. 6, внизу). К сожалению, такое различие в действии лекарственных форм раньше не было известно, поэтому продаваемый талидомид был рацемической смесью обоих антиподов. Они отличаются взаимным расположением в пространстве двух фрагментов молекулы.

Еще один пример. Пеницилламин, структура которого была нарисована на собаке и волке на обложке журнала, - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно обладает способностью давать прочные комплексы с ионами этих металлов; образующиеся комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, в ряде других случаев. При этом применяют только «левую» форму препарата, так как «правая» токсична и может привести к слепоте.

Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S -тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы. А правовращающий R -тироксин (декстроид) понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например, darvon и novrad для синтетического наркотического анальгетика и препарата от кашля соответственно.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это, кстати, одна из причин очень высокой стоимости некоторых лекарств, поскольку направленный синтез только одного из них - сложная задача. Поэтому не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшая часть является оптически чистой, остальные - рацематы.

О хиральности молекул см. также:
Глава Происхождение хиральной чистоты из книги Михаила Никитина



error: Контент защищен !!