Найти производную методом логарифмического дифференцирования онлайн. Сложные производные

Пусть
(1)
есть дифференцируемая функция от переменной x . В начале мы рассмотрим ее на множестве значений x , для которых y принимает положительные значения: . В дальнейшем мы покажем, что все полученные результаты применимы и для отрицательных значений .

В некоторых случаях, чтобы найти производную функции (1), ее удобно предварительно прологарифмировать
,
а затем вычислить производную. Тогда по правилу дифференцирования сложной функции ,
.
Отсюда
(2) .

Производная от логарифма функции называется логарифмической производной:
.

Логарифмическая производная функции y = f(x) - это производная натурального логарифма этой функции: (ln f(x))′ .

Случай отрицательных значений y

Теперь рассмотрим случай, когда переменная может принимать как положительные, так и отрицательные значения. В этом случае возьмем логарифм от модуля и найдем его производную:
.
Отсюда
(3) .
То есть, в общем случае, нужно найти производную от логарифма модуля функции .

Сравнивая (2) и (3) мы имеем:
.
То есть формальный результат вычисления логарифмической производной не зависит от того, взяли мы по модулю или нет. Поэтому, при вычислении логарифмической производной, мы можем не беспокоится о том, какой знак имеет функция .

Прояснить такую ситуацию можно с помощью комплексных чисел. Пусть, при некоторых значениях x , отрицательна: . Если мы рассматриваем только действительные числа, то функция не определена. Однако, если ввести в рассмотрение комплексные числа, то получим следующее:
.
То есть функции и отличаются на комплексную постоянную :
.
Поскольку производная от постоянной равна нулю, то
.

Свойство логарифмической производной

Из подобного рассмотрения следует, что логарифмическая производная не изменится, если умножить функцию на произвольную постоянную :
.
Действительно, применяя свойства логарифма , формулы производной суммы и производной постоянной , имеем:

.

Применение логарифмической производной

Применять логарифмическую производную удобно в тех случаях, когда исходная функция состоит из произведения степенных или показательных функций. В этом случае операция логарифмирования превращает произведение функций в их сумму. Это упрощает вычисление производной.

Пример 1

Найти производную функции:
.

Решение

Логарифмируем исходную функцию:
.

Дифференцируем по переменной x .
В таблице производных находим:
.
Применяем правило дифференцирования сложной функции .
;
;
;
;
(П1.1) .
Умножим на :

.

Итак, мы нашли логарифмическую производную:
.
Отсюда находим производную исходной функции:
.

Примечание

Если мы хотим использовать только действительные числа, то следует брать логарифм от модуля исходной функции:
.
Тогда
;
.
И мы получили формулу (П1.1). Поэтому результат не изменился.

Ответ

Пример 2

С помощью логарифмической производной, найдите производную функции
.

Решение

Логарифмируем:
(П2.1) .
Дифференцируем по переменной x :
;
;

;
;
;
.

Умножим на :
.
Отсюда мы получаем логарифмическую производную:
.

Производная исходной функции:
.

Примечание

Здесь исходная функция неотрицательная: . Она определена при . Если не предполагать, что логарифм может быть определен для отрицательных значений аргумента, то формулу (П2.1) следует записать так:
.
Поскольку

и
,
то это не повлияет на окончательный результат.

Ответ

Пример 3

Найдите производную
.

Решение

Дифференцирование выполняем с помощью логарифмической производной. Логарифмируем, учитывая что :
(П3.1) .

Дифференцируя, получаем логарифмическую производную.
;
;
;
(П3.2) .

Поскольку , то

.

Примечание

Проделаем вычисления без предположения, что логарифм может быть определен для отрицательных значений аргумента. Для этого возьмем логарифм от модуля исходной функции:
.
Тогда вместо (П3.1) имеем:
;

.
Сравнивая с (П3.2) мы видим, что результат не изменился.

Вам кажется, что до экзамена еще много времени? Это месяц? Два? Год? Практика показывает, что ученик лучше всего справляется с экзаменом в том случае, если начал готовиться к нему заблаговременно. В ЕГЭ немало сложных заданий, который стоят на пути школьника и будущего абитуриента к высшим баллам. Эти преграды нужно научиться преодолевать, к тому же, делать это несложно. Вам необходимо понять принцип работы с различными заданиями из билетов. Тогда и с новыми не возникнет проблем.

Логарифмы на первый взгляд кажутся невероятно сложными, но при детальном разборе ситуация значительно упрощается. Если вы хотите сдать ЕГЭ на высший балл, вам стоит разобраться в рассматриваемом понятии, что мы и предлагаем сделать в этой статье.

Для начала разделим эти определения. Что такое логарифм (log)? Это показатель степени, в которую надо возвести основание, чтобы получить указанное число. Если непонятно, разберем элементарный пример.

В этом случае основание, стоящее внизу, необходимо возвести во вторую степень, чтобы получить число 4.

Теперь разберемся со вторым понятием. Производная функции в любом виде называется понятие, характеризующее изменение функции в приведенной точке. Впрочем, это школьная программа, и если вы испытываете проблемы с данными понятиями по отдельности, стоит повторить тему.

Производная логарифма

В задания ЕГЭ по этой теме можно привести несколько задач в качестве примера. Для начала самая простая логарифмическая производная. Необходимо найти производную следующей функции.

Нам нужно найти следующую производную

Существует специальная формула.

В этом случае x=u, log3x=v. Подставляем значения из нашей функции в формулу.

Производная x будет равняться единице. С логарифмом немного труднее. Но принцип вы поймете, если просто подставите значения. Напомним, что производной lg x называется производная десятичного логарифма, а производная ln х — это производная от натурального логорифма (по основанию e).

Теперь просто подставьте полученные значения в формулу. Попробуйте сами, далее сверим ответ.

В чем здесь может быть проблема для некоторых? Мы ввели понятие натурального логарифма. Расскажем о нем, а заодно разберемся, как решать задачи с ним. Ничего сложного вы не увидите, особенно, когда поймете принцип его работы. К нему вам стоит привыкнуть, так как он нередко используется в математике (в высших учебных заведениях тем более).

Производная натурального логарифма

По своей сути, это производная логарифма по основанию e (это иррациональное число, которое равняется примерно 2,7). На деле ln очень прост, поэтому часто используется в математике в целом. Собственно, решение задачи с ним тоже не станет проблемой. Стоит запомнить, что производная от натурального логарифма по основанию е будет равно единице поделенной на x. Самым показательным будет решение следующего примера.

Представим ее как сложную функцию, состоящую из двух простых.

Достаточно преобразовать

Ищем производную от u по x

Когда нам нужно выполнить дифференцирование показательно степенной функции вида y = (f (x)) g (x) или преобразовать громоздкое выражение с дробями, можно использовать логарифмическую производную. В рамках этого материала мы приведем несколько примеров применения этой формулы.

Чтобы понять эту тему, необходимо знать, как пользоваться таблицей производных, быть знакомым с основными правилами дифференцирования и представлять себе, что такое производная сложной функции.

Как вывести формулу логарифмической производной

Для получения этой формулы нужно сначала произвести логарифмирование по основанию e, а затем упростить получившуюся функцию, применив основные свойства логарифма. После этого надо вычислить производную неявно заданной функции:

y = f (x) ln y = ln (f (x)) (ln y) " = (ln (f (x))) " 1 y · y " = (ln (f (x))) " ⇒ y " = y · (ln (f (x))) "

Примеры использования формулы

Покажем на примере, как это делается.

Пример 1

Вычислить производную показательно степенной функции переменной x в степени x .

Решение

Проводим логарифмирование по указанному основанию и получаем ln y = ln x x . С учетом свойств логарифма это можно выразить как ln y = x · ln x . Теперь дифференцируем левую и правую части равенства и получаем результат:

ln y = x · ln x ln y " = x · ln x " 1 y · y " = x " · ln x + · ln x " ⇒ y " = y · 1 · ln x + x · 1 x = y · (ln x + 1) = x x · (ln x + 1)

Ответ: x x " = x x · (ln x + 1)

Такую задачу можно решить и другим способом, без логарифмической производной. Сначала нам надо преобразовать исходное выражение так, чтобы перейти от дифференцирования показательно степенной функции к вычислению производной сложной функции, например:

y = x x = e ln x x = e x · ln x ⇒ y " = (e x · ln x) " = e x · ln x · x · ln x " = x x · x " · ln x + x · (ln x) " = = x x · 1 · ln x + x · 1 x = x x · ln x + 1

Рассмотрим еще одну задачу.

Пример 2

Вычислите производную функции y = x 2 + 1 3 x 3 · sin x .

Решение

Исходная функция представлена в виде дроби, значит, мы можем решить задачу с помощью дифференцирования. Однако эта функция довольно сложная, значит, преобразований потребуется много. Значит, нам лучше использовать здесь логарифмическую производную y " = y · ln (f (x)) " . Поясним, почему такое вычисление удобнее.

Начнем с нахождения ln (f (x)) . Для дальнейшего преобразования нам потребуются следующие свойства логарифма:

  • логарифм дроби можно представить в виде разности логарифмов;
  • логарифм произведения можно представить в виде суммы;
  • если у выражения под логарифмом есть степень, мы можем вынести ее в качестве коэффициента.

Преобразуем выражение:

ln (f (x)) = ln (x 2 + 1) 1 3 x 3 · sin x 1 2 = ln (x 2 + 1) 1 3 - ln (x 3 · sin x) 1 2 = = 1 3 ln (x 2 + 1) - 3 2 ln x - 1 2 ln sin x

В итоге у нас получилось достаточно простое выражение, производную которого вычислить несложно:

(ln (f (x))) " = 1 3 ln (x 2 + 1) - 3 2 ln x - 1 2 ln sin x " = = 1 3 ln (x 2 + 1) " - 3 2 ln x " - 1 2 ln sin x " = = 1 3 (ln (x 2 + 1)) " - 3 2 (ln x) " - 1 2 (ln sin x) " = = 1 3 · 1 x 2 + 1 · x 2 + 1 " - 3 2 · 1 x - 1 2 · 1 sin x · (sin x) " = = 1 3 · 2 x x 2 + 1 - 3 2 x - cos x 2 sin x

Теперь то, что у нас получилось, нужно подставить в формулу логарифмической производной.

Ответ: y " = y · ln (f (x)) " = x 2 + 1 3 x 3 · sin x · 1 3 · 2 x x 2 + 1 - 3 2 x - cos x 2 sin x

Чтобы закрепить материал, изучите еще пару следующих примеров. Здесь будут приведены только вычисления с минимумом комментариев.

Пример 3

Дана показательно степенная функция y = (x 2 + x + 1) x 3 . Вычислите ее производную.

Решение:

y " = y · (ln (f (x))) " = (x 2 + x + 1) x 3 · ln (x 2 + x + 1) x 3 " = = (x 2 + x + 1) x 3 · x 3 · (x 2 + x + 1) " = = (x 2 + x + 1) x 3 · x 3 " · ln (x 2 + x + 1) + x 3 ln (x 2 + x + 1) " = = (x 2 + x + 1) x 3 · 3 x 2 · ln (x 2 + x + 1) + x 3 · 1 x 2 + x + 1 · x 2 + x + 1 " = = (x 2 + x + 1) x 3 · 3 x 2 · ln (x 2 + x + 1) + x 3 2 x + 1 x 2 + x + 1 = = (x 2 + x + 1) x 3 · 3 x 2 · ln (x 2 + x + 1) + 2 x 4 + x 3 x 2 + x + 1

Ответ: y " = y · (ln (f (x))) " = (x 2 + x + 1) x 3 · 3 x 2 · ln (x 2 + x + 1) + 2 x 4 + x 3 x 2 + x + 1

Пример 4

Вычислите производную выражения y = x 2 + 1 3 · x + 1 · x 3 + 1 4 x 2 + 2 x + 2 .

Решение

Применяем формулу логарифмической производной.

y " = y · ln x 2 + 1 3 · x + 1 · x 3 + 1 4 x 2 + 2 x + 2 " = = y · ln x 2 + 1 3 + ln x + 1 + ln x 3 + 1 4 - ln x 2 + 2 x + 2 " = = y · 1 3 ln (x 2 + 1) + 1 2 ln x + 1 + 1 4 ln (x 3 + 1) - 1 2 ln (x 2 + 2 x + 2) " = = y · (x 2 + 1) " 3 (x 2 + 1) + x + 1 " 2 (x + 1) + (x 3 + 1) " 4 x 3 + 1 - x 2 + 2 x + 2 " 2 x 2 + 2 x + 2 = = x 2 + 1 3 · x + 1 · x 3 + 1 4 x 2 + 2 x + 2 · 2 x 3 (x 2 + 1) + 1 2 (x + 1) + 3 x 2 4 (x 3 + 1) - 2 x + 2 2 (x 2 + 2 x + 2)

Ответ:

y " = x 2 + 1 3 · x + 1 · x 3 + 1 4 x 2 + 2 x + 2 · 2 x 3 (x 2 + 1) + 1 2 (x + 1) + 3 x 2 4 (x 3 + 1) - 2 x + 2 2 (x 2 + 2 x + 2) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



error: Контент защищен !!